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Abstract — The accuracy of the large, curvilinear,

Lagrange-type elements has been analyzed. We have

compared the results of the four differently hp-refined

models and pointed out the accuracy of our models and the

necessity for the large-domain approach in modeling. The

influence of geometrical inexactness to the limit of achievable

accuracy has been investigated. It has been shown that the

elements used here represent a good choice for fast and

reliable geometrical modeling of EM structures.
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I. INTRODUCTION

HE modeling of electromagnetic structures by the
finite elements of higher (arbitrary) orders offers

significant advantages compared to the traditionally
employed first (and sometimes second) order elements. In
our previous work [1], [2], we have shown that these
advantages can not be fully exploited within the small-
domain modeling techniques (utilization of the electrically
very small geometrical elements, typically on the order of

/10 in each dimension,  being the wavelength in the
medium). In contrast to the small-domain techniques, the
large-domain computational approach (electrically large
geometrical elements – typically on the order of  in each
dimension – are used to model electromagnetic structures)
can greatly reduce the number of unknowns for a given
problem and enhance further the accuracy and efficiency
of the finite element method (FEM) analysis [1]–[3].

The choice of element-type for geometrical modeling in
FEM generally involves a trade-off between the flexibility
of the element at modeling different geometries and its
mathematical complexity. Bricks and tetrahedra [4], for
instance, are simple to implement and their parameters are
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fast to compute. On the other hand, geometrical flexibility
of these elements is poor and, because of their straight
edges and planar sides, modeling of complex curved
structures becomes exceedingly cumbersome and requires
extremely fine meshes in order to achieve a satisfactory
level of geometrical approximation. This inevitably leads
to the reduction of element sizes, i.e., to small-domain
(subdomain) techniques. The number of unknowns
(unknown field-distribution coefficients) needed to obtain
results of satisfactory accuracy becomes very large even
for the structures of low and moderate complexity.
Accordingly, the requirements in computational resources
and computational time are enormous.

Our goal in this paper is to investigate the accuracy of
the geometrical models obtained with the large Lagrange-
type curved parametric hexahedra of higher (theoretically
arbitrary) orders and analyze the influence of the geometry
of hexahedra on the accuracy of the FEM solutions.

II. THEORETICAL BACKGROUND

The Lagrange-type curved parametric hexahedron is
analytically described as
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with Ku, Kv, and Kw being the adopted geometrical orders
of the element along different parametric coordinates.
Functions K

mL  are Lagrange interpolating polynomials
given by
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where ju  are the uniformly spaced interpolating nodes

defined on an interval 11 u , and similarly for
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)(vLK
n  and )(wLK

l . Equations (1)-(3) define a mapping
from the cubical parent domain to the generalized
hexahedron, as illustrated in Fig. 1.
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Fig.1. Cube to hexahedron mapping defined by
Eqs. (1)-(3).

The electric fields inside the hexahedra are represented
by the following expansion:
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where f are curl-conforming hierarchical polynomial basis
functions of coordinates u, v, and w, Nu, Nv, and Nw are the
adopted field approximation orders, which are entirely
independent from the element geometrical orders, uijk,

vijk, and wijk are unknown field-distribution coefficients,
and r is given in Eq.(1).

To solve for the coefficients { }, the expansion in
Eq.(4) is substituted in the curl-curl electric-field vector
wave equation

0r
2
0

-1
r EE k ,                    (8)

where r and r are complex relative permittivity and
permeability of the inhomogeneous (possibly lossy)
medium, respectively, 000k  is the free-space

wave number, and  is the angular frequency of the
implied time-harmonic variation. A standard Galerkin-
type weak form discretization of Eq.(8) yields
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where V is the volume of a generalized hexahedron, kji ˆˆ̂f

stands for any of the functions kjiu ˆˆ̂f , kjiv ˆˆ̂f  or kjiw ˆˆˆf , S is

the boundary surface of the hexahedron, and n is the
outward unit normal (dS = ndS). Due to the continuity of
the tangential component of the magnetic field intensity
vector, n H, and hence the vector n ( E) in Eq.(9)
across the interface between any two finite elements in the
FEM model, the right-hand side term in Eq.(9) contains
the surface integral over the overall boundary surface of
the entire FEM domain, and not over the internal
boundary surfaces between the individual hexahedra in the
model. The tangential component of H over the boundary
surface of the FEM domain is determined by appropriate
boundary conditions imposed at the surface. In analysis of
metallic cavities, for instance, these conditions reduce to
the simple requirement that the tangential component of E
vanish near the cavity walls, which is enforced by a priori
setting to zero the coefficients { } associated with the
tangential E on the sides of elements adjacent to cavity
walls.

The simplest class of hierarchical higher order basis
functions on generalized hexahedra is a set of simple 3-D
power functions in the u – v – w coordinate system
modified for curl conformity, that is, to automatically
satisfy the continuity condition for the tangential
component of E across the side shared by finite elements
[1]. These functions, are given by
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with analogous expressions for fvijk and fwijk in Eq.(5).

III. EVALUATION OF THE LAGRANGE-TYPE FINITE
ELEMENTS FOR GEOMETRICAL MODELING

A. Computational Time and the Demand for Resources
Shown in Fig. 2 are four different hp-refined higher

order FEM models (h-refinement stands for the utilization
of the smaller elements in the geometrical mesh, whereas
p-refinement denotes the increase in accuracy by
increasing the orders of field expansion functions). Each
of the four h-refined models is subsequently gradually
p-refined to yield the same accuracy (throughout the
considered frequency range of 8 to 15 GHz) as the simple
three-element model. All of the models, i.e. the required
accuracy, are so chosen as to reproduce the results of the
S-parameter calculation given in [5]. The comparison of
our solution with the reference results is given in Fig. 3.
The lower curve represents |S11| and the upper one |S21|.
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Fig.2. Comparison of the four different hp-refined
higher order FEM models, with 3, 9, 18, and 34 elements,

yielding the same accuracy.

We can observe that the required CPU time and the
number of nonzero matrix elements increase with the
number of elements comprising the large-domain mesh. It
is therefore desirable to use the least number of large
elements that yields the required accuracy. It is important
to mention at this point that each of the h-refined models
sets the upper bound on achievable accuracy and although
in this particular example three-element model is the
optimal one, it is the combined hp-refinement that should
be used for the best results.
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Fig.3. Obtained result shows very good agreement with
the ones from reference [5].

B. Accuracy of the curvature modeling
Next, we want to analyze in what amount the

inexactness of the geometrical model affects the accuracy
of the FEM solution. Fig. 4 shows the relative error in
calculation of the effective relative permittivity of an
empty circular waveguide. (The exact, analytical, solution
has been used to evaluate errors and compare the 2nd and
the 4th order model). The 2nd order model (Ku = 2Kv = 2)
already yields a relative error that is a fraction of percent.
With employment of the 4th order model (Ku = 4Kv = 4), a
significant additional improvement in accuracy can be
observed. The p-refinement in this model brings the
analysis error quickly down below 10-4.
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Fig.4. Second and fourth order models as an illustration
of the achievable accuracy limits.

We can deduce, however, that it is impossible to
p-refine any of the models further below the lower bound
set by the inherent geometrical errors of the models used
to represent the circular cross-section of the waveguide.

IV. CONCLUSION

The accuracy of the large-domain geometrical models
of the curved structures, employing Lagrange-type
elements, has been analyzed. We have shown that it is
desirable to use the least number of large elements
yielding the required accuracy. The error of the
geometrical approximation of the circle by large
Lagrange-type elements results in the lower bounds set on
the calculation error being inherent to the considered
circular waveguide models. With the increase in the
geometrical orders of elements, as expected, the
achievable accuracy also increases. Further mesh
refinement can be used as needed, in order to eliminate
potentially ill situations, while still keeping the elements
as large as possible.
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