A Model of Software System for Parking
Using Search Algorithms

Drazen Draskovi¢*, Sanja Vukiéevi¢ *

¥

* School of Electrical Engineering, University of Belgrade, Serbia
** School of Organizational Sciences, University of Belgrade, Serbia
drazen.draskovic@etf.bg.ac.rs, vukicevicsanja@yahoo.com

Abstract - In this paper a model of software system for
parking using search algorithms has been described. The
basic idea is to provide a system user with a fast and
simplified way to find the nearest empty place while
entering the parking lot of large surface. During the
searching procedure, modified branch and bound method is
used.

On entering the parking lot, a system user is connected to a
server by means of the Bluetooth. Then, the server sends the
parking lot schema in a predefined XML format to a smart
phone, as well as the identifier of the entrance where the
user is currently located. Then, a parking schema is being
created on the phone and a route to the closest parking
space is being displayed. This software system has been
developed to be used as an educational system for teaching
the academic course ‘Expert Systems’, but it could be
improved and used in real-life applications as well.

Keywords - Branch and Bound Search Algorithm,
Educational System, Expert Systems, Parking System,
Wireless Sensor Network (WSN)

L INTRODUCTION

With the development of contemporary technologies,
people very often do not show understanding of everyday
activities, which may waste lot of time. However, with the
help of modern technologies such activities may be
accelerated to a great extent. Generally speaking, large
parking lots with lots of parking space are used more
worldwide. Usually, users see the number of empty
parking places at the very entrance, but they are not able
to notice the location of the nearest parking place. The
situation, in which a user moving through the parking lot
may find himself at the spot where he should turn left or
right not knowing where he would find the parking place
faster and more easily, represents a real problem. The
borderline case may occur in which a user cruises
endlessly within the parking lot while some parking places
are being emptied, and then filled by other users who have
been faster. According to the study by IBM in 20 cities
worldwide drivers usually spend daily 20 minutes on
average in order to find an empty parking place [1]. This
time, spent by users trying to find a place, increases the
petrol consumption, and the harmful gases release pollutes

This project is supported by the Ministry of Education and Science
of the Republic of Serbia.

MIPRO 2012/CIS

the environment.

The idea of this paper is to create the system that
would enable the users to find the first empty parking
place more easily. At the entrance a user would obtain the
schema of the whole parking lot via his mobile phone.
Sending the parking lot schema may be fulfilled by means
of some data transfer wireless technologies. Thus, on the
basis of the obtained parking lot schema, a mobile phone
would draw a path to the nearest parking place whereby a
user reach the first empty place quickly and easily by
following the drawn path. In addition to this, all empty
places within the parking lot would be marked, which
enables a user to select another empty place at his own
will. This system would lead to minimizing the number of
vehicles circulating around the parking lot in search of an
empty place at parking with high level of congestion. The
vehicle movement time at the parking lot would thus be
significantly minimized, and the entering parking time
would not be maximized, mainly because a user must wait
for the entrance ramp to be lifted during which time a
parking lot schema will be received via a mobile phone.

In section II, the technical requirements for the
creation of this software system have been given, while
Section III provides the problem description with the
model parking lot description together with the search
algorithm. Section IV provides the conclusion of this

paper.

II. TECHNICAL REQUIREMENTS

Certain parking lot technical requirements are needed
for the proper functioning of the designed system.
Figure 1 displays the technical requirements diagram for a
parking lot and for a user, as well as their interconnection.
The displayed devices on the technical requirements
diagram are the following: (1) the central server,
(2) the distributed terminal, (3) a Bluetooth terminal
adaptor, (4) a user’s mobile phone, and (5) parking place
status sensors, respectively.

The central server and a user’s mobile phone are
connected by means of the distributed terminal and the
Bluetooth terminal adaptor that represent intermediaries in
communication. On the other hand, parking place status
sensors have one-way connection with the server.

The central server represents a processing unit which
keeps a record on all the parking places and their current

1279

availability for a user (a place is either empty or
occupied). At a given moment, on the central server there
is up-to-date status of parking spaces. In case that a
parking lot has a great number of parking places, the
parking place availability check-up may be a complex
time consuming operation. At the same time, the central
server is also a server of a distributed system, which is
accessed by the terminals using a predefined protocol.
Terminals send requirements for the parking schema to
the central server. If a great number of terminals exist,
then the central server must provide the parallel
requirements processing in order to prevent the slowing
down of the terminals in cases of great traffic jam. The
system performances heavily depend on the central server
performances.

(5)

Figure 1. Parking Lot System Model

The distributed terminals represent the devices located
at every entrance of a parking lot. A terminal serves as an
intermediary in communication between a user and the
central server. The need for terminal existence has arisen
due to a reason that there are several entrances within the
larger parking lots. In case of the central server non-
existence, it would be necessary for the terminals to
communicate between each other concerning the parking
place availability, which renders the communication
protocol of the whole system more complex and
demanding, while simultaneously increasing the data
synchronization time and leads to the terminal response
delay. The central server and terminal connection must be
carried out via fast connections. In the borderline case, the
information flow up to the central server will be equal to
the speed of terminal requests multiplied by the number of
terminals. For this reason, a terminal should possess
appropriate resources so that these pieces of information
are being processed timely, and the response would be
then sent back to the terminal.

A parking place status sensor is a device that enables
the automatic detection of parking place availability. The
sensor detects the presence of an object having vehicle
dimensions whereby the oscillation between occupied and
empty state is evaded too often. It could be a problem, if
sensor detects a person who is passing past the sensor.
This problem was solved by using two sensors on each
parking place [2]. Status sensors are connected to the
sensor network which communicates with the central

1280

server. For system implementation in real-life, we suggest
using sensors explained in [3].

The communication between the sensor network and
the central server must be stable and fast, because the
parking place state update frequency will be proportional
to the vehicle circulation at the parking lot [4]. If the
vehicles circulation at the parking lot is extremely
frequent, it might be the case that a great number of
sensors would then send the parking place status
information too frequently, thus making the central server
overloaded and unable to process other requests coming
from the terminal. The parking place status sensor request
which is sent to the central server has the higher priority
during the processing, because it is essential that all the
terminals should be provided with the updated parking lot
situation picture.

The Bluetooth adaptor is a device that has to exist at
each terminal. The Bluetooth adaptor represents an
intermediary at the physical level of communication
between users, that is, between a mobile phone and a
terminal, which passes the requests to the central server.
The predefined protocol for the exchange of messages and
other objects is being used. At each terminal an adaptor
must be adjusted to be visible so that a user might connect
by means of his mobile phone to the terminal he moves
towards.

A user must possess a mobile phone with the
application able to display a parking lot schema obtained
by the Bluetooth communication with the terminal. A
mobile phone must also support the Bluetooth protocol so
that the mobile phone should be visible to the terminal
with the Bluetooth adaptor. The application should be
enabled to establish a device visibility so that an adapter
can find it and approve the Bluetooth communication with
other devices. The mobile phone must have empty
memory space in order to permit the application to save
the parking lot terminal information and display it to the
user. Accordingly, the application should be allowed to
enter data into the memory card and allowed to read data
from that card too.

The new Android phones support Bluetooth Core
version 2.0 with Enhanced Data Rate (EDR), for fast data
transfer. The practical data transfer rate of EDR is 2.1
Mbit/s [5]. Considering the schema which is transferred
via Bluetooth is in XML format, it does not require faster
connection.

Users, who do not have smart phones, may also use
this system but with modification of the proposed
solution. The whole parking lot should possess the system
of the Bluetooth transmitter and the Bluetooth receiver,
and a mobile phone would be constantly connected with
only one receiver/transmitter. In the ideal case it would
always be the nearest one, because the signal of such a
receiver/transmitter is the strongest one. The empty
parking place notice would be sent to users in the format
of a text message.

III. THE PROBLEM DESCRIPTION

Parking lot schema defining ought to be carried out
before the system installation. By parking lot schema

MIPRO 2012/CIS

defining the system is being provided with the information
concerning the parking spaces set up, the parking lot
shape, the entrance/exit system, and the possibility of
passing from one part of the parking lot to another one,
and the like. XML files have been used for the parking lot
schema description, and the system has been realized in
the Java programming language, using the Android
libraries.

A. The Parking Lot Model

The basic elements which represent a parking lot are
the following:

The parking block,

The parking place,

The parking entrance,

The transition between the two parking blocks.

Every parking element has a unique ID for a group of
elements to which it belongs. Parking places, entrances to
the parking block, as well as the transitions between two
parking blocks might be located only at the edge of a
parking block. If the need arises for parking places in the
middle of the rectangular parking lot, this would be
achieved by merging several parking blocks. Parking
blocks constitute the tree structure. The block which
contains the entrance at which the user is located
represents the tree root. The simplest way to write down
this model is in the XML files format. The XML file
possesses the main tag entitled <ParkingLotSchema>
within which the other tags, described in the remaining
part of the paper, are contained. The parking block
represents a block within which parking places are
located, and which may be accessed by using the parking
entrance and from which one might move to the
neighboring parking block by means of the transition
between the two parking blocks. The parking block may
be of any shape. At this moment, there exists a support
only for the rectangular parking block. The rectangular
parking block is described through its height, width,
parent block, merge place in relation to the parent block

<ParkingBlock ID='1’>
<Type>Rectangular</Type>
<Width>15</wWidth>
<Height>14</Height>
<OffsetxX>0</0OffsetX>
<Offsety>15</0Offsety>
<ParentBlock>3</ParentBlock>
<MergingPoint>10</MergingPoint>
<MergingSide>right</MergingSide>
<ParkingSpots>
<ParkingSpot>...</ParkingSpot>
</ParkingSpots>
<Gateways>
<Gateway>...</Gateway>
</Gateways>
<Entries>
<Entry>...</Entry>
</Entries>
</ParkingBlock>

Figure 2. XML code for a parking block

MIPRO 2012/CIS

and the merge side in relation to the parent block. If the
parent block does not contain the data on the place of
merging with the parent block and the side of merging in
relation to the parent block, the data become irrelevant.
The parking block contains the list of parking places
which are located within it, the list of parking block
entrances, as well as the list of transitions to the parent
parking block. An example of one parking block,
described in the XML file is provided in Figure 2.

The type of a given parking block is rectangular. The
displayed block in the parking blocks tree has a parent
block with ID=3, located at the parent right side, starting
from the tenth meter of the parent right side (viewed from
above downwards). Only the name of a new block should
be added in case of introducing new shapes of parking
blocks. The move absolute values change along the
appropriate axes, even though they are given in the block
structure. Equally, these values might be calculated in the
application itself.

The parking place represents space aimed for one
vehicle. The parking place is described by its height,
width, position in the given block, the side at which it is
located within the parking block and the status, which
might be either empty or occupied. An example of a
parking place, described in the XML file, is given in
Figure 3. A parking place located at the lower part of the
given parking block is displayed, as well as the initial
point of parking place branching which is on the
coordinate 0, and the block is extended 3 meters to the
right and 5 meters upwards. The current status of this
parking place is ,,occupied®.

<ParkingSpot>
<BlockSide>Bottom</BlockSide>
<StartPoint>0</StartPoint>
<Width>3</Width>
<Height>5</Height>
<Status>Occupied</Status>
</ParkingSpot>

Figure 3. XML code for a parking places

The parking block entrance is described in terms of its
width, position and side at which it is located within the
appropriate parking block. An example of one such
parking entrance, described in the XML file, is given in
Figure 4. The displayed example represents the parking
block entrance located on the left side of the given parking
block, being 3 meter wide and the branching point from
which it begins is located on the left side of the block, 5
meters from its upper point. Since the entrance is located
on the left side of the block, or more precisely on one of
the vertical sides, the block entrance is extended according
to the height, so the final extension point is at the eighth
meter from the upper side of the block on its left side.

<Entry>
<EntrySide>left</EntrySide>
<Width>3</Width>
<StartPoint>5</StartPoint>
</Entry>

Figure 4. XML code for entry point

1281

The transition between two parking blocks represents
the place to which one might move from one to parking
block to another. The transition between the two parking
blocks is described in terms of the width, position in an
appropriate parking block, as well as the side on which it
is located in an appropriate parking block. Currently,
every transition is a two-way one. Nevertheless, it might
be introduced in the subsequent versions of the system
that the transition type is one-way or two-way transition.
An example of one transition between the two parking
blocks, described in the XML file, is given in Figure 5.

<Gateway>
<GatewaySide>Top</GatewaySide>
<Width>5</Width>
<StartPoint>10</StartPoint>
</Gateway>

Figure 5. XML code for gateway

This system supports all sorts of parking that may be
described by a sequence of mutually perpendicular and
parallel rectangles which are mutually in the contact. The
most basic shape is a rectangular parking lot, which
contains parking places along its edge. Such a parking lot
is described by only one block at which parking places are
located. If a parking lot shape is a rectangular and has
parking places not only along the edge, but also within the
block, a need would arise for the existence of several
parking blocks, which are lined up one upon the other.

Figure 6 illustrates two blocks. Block 1 represents the
root block in the parking tree. Block 2 immediately
follows the first one. The merge side for block 2 is the
lower one, because it is viewed in relation to the parents
block. The place of merging equals 0 and blocks have the
same width (merge side). Block 2 contains two transitions
to the parent block. Both transitions are located at its
bottom side, one begins at the beginning and the other one
at the end of the bottom side. The first two rows of
parking places belong to the upper block, and the other
two to the lower block. Each block contains two parking

IR RNNNRRRRNNREEREN
2 |

}‘ | |

_ | |
% |
EeEs IR RRALINNRRRRRRRAN

Figure 6. The different block schema for the same parking lot

1282

entrances, from its left and right side. Provided that a
vehicle enters through the left entrance, and the first
empty place is in block 2, the schema by which it would
move is a schema through the left transition to the second
block to the parking place.

The implementation of the system itself is divided into
classes for parking structure realization and the specific
Android classes. The classes comprising the parking
structure are the classes describing the block, the
rectangular block, parking place, parking entrance, the
transition between the parking blocks and the search for
the nearest parking place on the given side of the parking
block. Android classes realize the very appearance of the
application, as well as the communication with the
parking server.

B. The Implemented Algorithm

The XML scheme will serve the purpose of dynamic
tree formation depending on the vehicle position. Figure 7
displays an example of the Faculty of Electrical
Engineering parking lot schema. Graph in Figure 7
displays every schema block by node, while each
transition between the blocks is represented by
relationship. If two or more rectangular blocks meet,
connections towards all the blocks will be defined.

s || B—B

Figure 7. Blok schema and graph for parking
of the Faculty of Electrical Engineering

D)

The algorithm starts by locating the block in which the
vehicle is situated (block A). Having detected the
belonging to a particular block, a search in that block is
being initiated as well as a search in all the neighboring
blocks (block B). A search is performed in such a way that
the shortest distance between the located vehicle
coordinates and the parking place coordinates are searched
for. The algorithm forms the search tree and memorizes
the nodes which are visited during the search so that they
do not move the same direction several times.

The search may be simultancously performed in the
observed and in the neighboring blocks. If an empty place
has not been found in the neighboring place, it is being
checked whether any block has already found the nearest
parking place. If this is the case, the search is being
finalized and stopped, and the nearest place is selected
from among the found ones. If this is not the case, the
search continues in its neighboring blocks, which have not
been searched through. We initialize four threads, one for
each block side, for the rectangular shape that is being
searched through. On finishing all the search threads, each
search thread reports on one parking place if there is one
existent. Having received the report on four parking
places, one is being selected that is the nearest one. The

MIPRO 2012/CIS

search for neighboring blocks is performed likewise.
Whether an algorithm would find a better place in the
neighboring blocks also depends on the transition distance
between the observed block and its neighbor. If the
nearest transition to the neighboring block is placed
farther from the place we have found in the observed
block, the search in the neighboring block is not
necessary. As it is presented in Figure 6, blocks could be
the same size but it is not usual in real life, as it can be
seen in Figure 7. Each block contains information how
many parking spots it consists. Therefore, time for block
searching is different.

When a user enters the block 1 parking entrance
displayed in Figure 6, the algorithm initiates the threads
for both sides of the block. It is being inspected whether
the parking places are empty or occupied in each thread
for all the parking places. Then, the empty parking places,
if there are such, sorts ascending in relation to the entrance
distance. The thread execution result is the first empty
parking place nearest to the entrance. When both threads
finish the search, the empty parking places are compared
and the one nearest to the entrance is selected, but the
obtained parking place does not represent the ultimate
result. Namely, it might be the case that in block 2 there is
a parking place which is nearer from the one found in the
block 1. Therefore, parallel with the block 1 threads, all
the neighboring blocks of the block one are searched
through, i.e. blocks 2 and 3. They are searched through in
the same way as block 1. When the search in all three
blocks is finished, the found parking places are compared
and then the parking place nearest to the entrance is being
proclaimed. Optimization may be performed in the
algorithm, so that the search is not carried out in the block
which is more distanced from the last parking place in the
block within which a car is located. In this example, this
would mean that the empty parking places search would
not be performed in block 3, unless there is no empty
place in blocks 1 and 2. In specific case, if driver isn’t able
to occupy empty parking spot, because another driver has
occupied an empty parking spot at this time, the driver
will require an empty parking spot again, through a
Bluetooth adaptor.

IV. FUTURE WORK

Possible improvement of the selected model are
support for other types of parking blocks, one-way
transition between parking blocks, more levels parking
support, and the nearest parking exit search. Other shapes
of parking blocks may be added to the system, in such a
way as to define the block description and the new types
of sides on condition that the edges are neither horizontal
nor vertical. The block is being currently described only
by its height and width, which is not sufficient enough
when we describe, for example a triangularly-shaped
parking lot. One-way transitions between the blocks are
possible with addition of the additional data which would
define whether the transition from one block to another is
unidirectional, and if this is the case, which direction
movement is permitted. Also, during the parking place
search, the algorithm might include the direction transition
check up. Modifications for parking with several levels is
simple, because the transition from one block of the lower

MIPRO 2012/CIS

level to the higher level block would be regarded as
ascending or descending. It would be also useful to add
the information to the blocks concerning the level to
which they belong, so that the system user can follow the
movement on the drawn schema. The calculation of
movements along the coordinates would be more
complicated for parking lots with several levels than in the
case of one level parking lot. Similarly, as there is a search
for the nearest parking place from the entrance, it is
possible to implement the nearest exit of the parking
block. The search algorithm remains the same as in the
case of empty parking place search, with the exception of
finding the exit, which must be defined in the XML
schema.

Defining the parking structure is possible also in the
form of the weighted graph, in which case, instead of
searching according to the branch and bound algorithm,
algorithm A* would be implemented, taking into
consideration also the schema weight, which would
represent heuristics in searching [6]. This graph is useful
in case when one transition is more passable than the
other, so the former should be used, even though it is
somewhat placed farther.

V. CONCLUSION

Our research is based on the standard parking analysis,
represented by the structure of mutually perpendicular or
parallel rectangles with two-way transition points between
the blocks, and then, on building a software system model
and defining the search algorithm.

The described system enables its users to save time in
the course of finding the nearest available parking place.
The existing parking system is not complicated to be
upgraded. On the contrary, it is necessary to add the
wireless infrastructure, in such a way as to place and
adjust the terminal with the Bluetooth adaptor connected
to the central server at every entrance ramp. Also, it is
necessary to define the parking lot schema with the
division into blocks. This might be complex depending on
the parking size and complexity, but should be done only
once. Finally, the most demanding process of parking
updating represents installing parking sensors at every
parking place. The complexity of parking installation is
directly dependent on the parking lot size and the number
of parking places.

Due to its modified search algorithm, this system is
also used as an educational system in teaching process
within the subject ‘Expert Systems’ for undergraduate
academic studies.

REFERENCES

[1] “IBM Global Parking Survey: Drivers Share Worldwide Parking
Woes”, IBM, New York, 2011.
http://www-03.ibm.com/press/us/en/pressrelease/35515.wss,
accessed on January 29", 2012

[2] J. Chinrungrueng, U. Sunantachaikul, S. Triamlumlerd,
"Smart Parking: an Application of optical Wireless Sensor
Network", International Symposium on Applications and the
Internet Workshops, Hiroshima, 2007.

1283

[3]

(4]

1284

S. V. Srikanth, P. J. Pramod, K. P. Dileep, S. Tapas, Mahesh U.
Patil, N. Sarat Chandra Babu, "Design and Implementation of
prototype Smart PARKing (SPARK) Sysem using Wireless
Sensor Network", International Conference on Advanced
Information Networking and Applications Workshops, Singapore,
2009.

S. Vujcic, G. Rakocevic, N. Kojic, D. Milicev, D. Vitas,
“A Classification and Comparison of Data Mining Algorithms for

[5]

[6]

Wireless Sensor Networks”, The IEEE International Conference
on Industrial Technology, Athens, 2012.

G. Kewney, “High speed Bluetooth comes a step closer: enhanced
data rate approved”, November 16™, 2004,
http://www.newswireless.net, accessed on March 22", 2012

B. Nikolic, “Expert Systems”, WUS Austria Educational
Publishing and University of Belgrade, Classroom Textbook,
June 2011.

MIPRO 2012/CIS

