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Abstract

Switches with input bu�ers can potentially provide high capacity, because they do not involve
multiplexing at output ports, and inputs can operate at high bit-rates. We have recently
proposed an algorithm for packet scheduling in high-capacity switches, termed round-robin
greedy scheduling (RRGS) [8]. RRGS completely removes head-of-line (HOL) blocking at
terabit capacity. However, RRGS cannot provide arbitrary bandwidth shares to input-output
pairs. We propose a simple extension of RRGS, termed weighted RRGS (WRRGS), which can
exibly share the bandwidth of any output among the inputs at terabit switching capacity.
We prove that WRRGS can share at least 50% of the total switch capacity. It exploits the fact
that RRGS �nds a maximal matching between inputs and outputs.

1 Introduction

Most generally, packet switches transfer pack-
ets from their inputs to the speci�ed outputs.
It is important to be able to exibly share an
output bandwidth among the inputs. In other
words, inputs should be guaranteed to get the
negotiated bandwidth even if some other in-
puts are overloaded. A switch with output
bu�ers is usually a set of statistical multi-
plexers. Packets coming from di�erent inputs
are stored in the output bu�er, and transmit-
ted according to some scheduling policy. For
example, weighted round-robin (WRR) pol-
icy would provide to the inputs their reserved
bandwidth shares. But, the capacity of a
switch with output bu�ers is limited by the
speed of the output bu�er. In contrast, the
capacity of a switch with input bu�ers is not
limited similarly because packets are stored
at the line bit-rate. So, switches with input
bu�ers can provide a much higher switching
capacity, which is why they attract much of
the interest recently [1]-[10]. In a switch with
input bu�ers, a packet competes not only with
the packets of other inputs bound for the same
output, but also with the packets of the same
input bound for other outputs. Several pro-
posed protocols calculate the maximal match-

ing between inputs and outputs that does not
leave input-output pair unmatched if there is
a tra�c between them [1, 5, 8, 10]. How-
ever, they do not provide exible sharing of
the output bandwidth among the inputs in a
switch with input bu�ers. Few protocols have
been proposed for this purpose [1, 3, 7, 9]. We
propose a new protocol which is simpler than
the previously proposed ones, and can, conse-
quently support packet switching of higher ca-
pacity. We discover that the maximal match-
ing of inputs and outputs not only removes
the head-of-line (HOL) blocking [4], but also
simpli�es the exible bandwidth sharing in a
switch with input bu�ers.
The simplest way to share the bandwidth in

a switch with input bu�ering is to precompute
a schedule in advance based on the reserva-
tions made in a connection setup phase [1].
Time is divided into frames that consist of
time slots. The schedule determines input-
output pairs that will be connected in each
time slot of a frame. Each input-output pair is
assigned a certain number of time slots within
a frame, which ensures the requested band-
width share. It can be shown that requests
can be accommodated as long as
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where aij is the number of time slots requested
by input-output pair (i; j), F is the frame
length, and N is the number of input and out-
put ports. As a result, the bandwidth reserved
for input-output pair (i; j) is pij = aij=F

times the line bit-rate. However, computing
the schedule has a complexity on the order of
O(FN2), and may become impracticable for
the fast varying tra�c. For this reason, An-
derson et al. propose the statistical match-
ing algorithm to arbitrarily share the switch
capacity [1]. In the statistical matching al-
gorithm, output j grants input i with prob-
ability pij = aij=F . Each input chooses one
output from which it received a grant in a
speci�ed probabilistic way. It has been shown
that the statistical matching uses 63% of the
total switch capacity, or 72% if two itera-
tions are performed. Stiliadis and Varma pro-
pose weighted probabilistic iterative matching
(WPIM) instead of statistical matching [9].
They argue that the computing of several dis-
tribution functions within one time slot, as
in statistical matching, becomes impractical
in high-capacity switches. In WPIM, time
is divided into frames, and input-output pair
(i; j) is assigned aij credits within each frame.
Namely, a counter associated to input-output
pair (i; j) is set to cij = aij at the begin-
ning of a frame, and is decremented when-
ever this queue is served. Queues with pos-
itive counters compete for transmission with
higher priority. They are rewarded according
to the parallel iterative matching (PIM) al-
gorithm. Remaining queues compete for the
rest of the bandwidth, and they are again re-
warded according to the PIM algorithm. The
performance of the WPIM protocol has been
assessed only through simulations. We will
show that the WPIM protocol exploits at least
50% of the switch capacity. Recently, Kam et
al. proposed a scheduling algorithm for ex-
ible bandwidth reservations in a WDMA op-
tical network with input bu�ering [3]. If the
number of wavelengths equals the number of
users, such WDMA network is equivalent to
a switch with input bu�ering. Kam et al.

also associate to each input-output queue a
counter which is increased in each time slot by
pij , and decreased by 1 if this queue has been
served. Queues with positive counters com-
pete for service, and they are served according
to some e�cient maximal weighted matching
algorithm. For example, queues are considered
for service in the order in which their counters
decrease. Since it processes N2 input-output
pairs, this algorithm can also become a bottle-
neck in high-capacity switches. It was shown
in [3] that this algorithm guarantees 50% of
the switch capacity.
In this paper, we propose a new protocol,

the weighted round-robin greedy scheduling
(WRRGS), that provides exible bandwidth
sharing in switches with terabit capacity. Ter-
abit switches involve more than 100 ports, line
bit-rates as high as 10Gb/s, and processing
times (equal to packet transmission times) of
10 � 100ns. Our approach is similar to the
WPIM, only it is based on the RRGS proto-
col instead of the PIM. In this way, the WR-
RGS implementation is further simpli�ed in a
comparison to the WPIM. The PIM algorithm
performs 2 log2N+2 selections in order to �nd
maximal matching, and involves the full inter-
connection between input and output modules
of the central controller. On the other side, the
RRGS algorithm performs only one selection
per time slot, and involves simple structure of
the central controller. So, WRRGS can poten-
tially be used in a switch with a larger number
of ports and/or higher line bit-rate, i.e. in a
switch with a higher capacity. We prove that
WRRGS can exibly allocate at least 50% of
the total switch capacity.

2 Weighted Round Robin

Greedy Scheduling

2.1 Protocol Description

The WPIM and WRRGS protocols compare
similarly as the PIM and RRGS protocols.
We will briey review them for the sake of
completeness. The PIM protocol consists of
several iterations: all inputs send requests
to the outputs for which they have packets
to send, requested outputs send acknowledge-
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Figure 1: Central controller for the PIM pro-
tocol

ments to their selected inputs, and selected in-
puts choose one output each [1]. Inputs and
outputs that have not been selected in the pre-
vious iterations compete in the next iteration
in the same way. It has been shown that the
PIM algorithm �nds a maximal matching after
no more than log2N+3=4 iterations [1]. Each
iteration involves two selections, and all itera-
tions have to be completed one after another
within one packet transmission time. The pla-
nar and two-dimensional designs of the cen-
tral controller that execute the PIM algorithm
are shown in Figure 1 (a) or (b), respec-
tively. Each input module (IM) sends a re-
quest to each output module (OM) and each
OM sends an acknowledgement to each IM.
There should be 2N2 wires connecting input
and output modules. Such central controllers
may become di�cult for implementation as N
grows. On the other side, the RRGS proto-
col consists of N steps. In the �rst step, some
particular input chooses one of the outputs for
which it has packets to send. In each following
step, the next input chooses one of the remain-
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Figure 2: Central controller for the RRGS pro-
tocol

ing outputs for which it has packets to send.
Clearly, RRGS can be implemented by using
a pipeline technique [8]. Each step of the al-
gorithm is completed within a separate time
slot, and the algorithm is completed within N
time slots. But, in each time slot, all inputs
choose outputs for di�erent time slots in fu-
ture, so, the central controller is calculating
in parallel schedules for N future time slots.
As a result, only one selection has to be per-
formed within one time slot (other N � 1 si-
multaneous selections are done in parallel). A
simple structure of the central controller that
executes the RRGS algorithm is shown in Fig-
ure 2. A round-robin (RR) arbiter associated
to each input module communicates only with
the RR arbiters associated to adjacent input
modules, and the complex interconnection be-
tween input and output modules is avoided. It
stores addresses of the reserved outputs into
the memory (M). Price that RRGS pays for
its simplicity is the additional pipeline delay,
which is on average equal to N=2 time slots.
This pipeline delay is not critical for assumed
very short packet transmission time.

The RRGS protocol needs to be further
modi�ed in order to provide exible sharing
of the total switch capacity. We propose that
time is divided into frames, and counter as-
sociated with input-output queues are set to
their negotiated values at the beginning of
each frame, as in WPIM. Queues with posi-
tive counters compete with higher priority ac-
cording to RRGS. Then, the remaining queues
contend according to RRGS for the available
bandwidth.

Consider an N �N cross-bar switch, where



each input port i; i 2 f0; 1; � � � ; N � 1g, has
N logical queues, corresponding to each of
the N outputs. All packets are �xed size
cells. The input of the WRRGS protocol is
the state of all input-output queues, or a set
C = f(i; j) j there is at least one packet at in-
put i for output jg. The output of the protocol
is a schedule or a set S = f(i; j) j packet will
be sent from input i to output jg. Note that
in each time slot, an input can only transmit
one packet, and an output can receive only one
packet. The schedule for the kth time slot is
determined as follows:

� Step 1: If k = 1 mod F then cij = aij ;

� Step 2: Ik = Ok = f0; � � � ; N � 1g; i = 0;
h = 0;

� Step 3: Input i chooses in a round-robin
fashion output, if any, j fromOk such that
cij > 0, and (i; j) 2 Ck;

� Step 4: Remove j from Ok and i from Ik;
Add (i; j) to Sk; cij = cij � 1; h = h + 1;

� Step 5: If h < N choose i = i+ 1 and go
to Step 3;

� Step 6: i = 0; h = 0;

� Step 7: If i 2 Ik choose j from Ok such
that (i; j) 2 Ck;

� Step 8: Remove j from Ok and i from Ik;
Add (i; j) to schedule Sk; h = h + 1;

� Step 9: If h < N go to Step 7;

In steps 1-5, prioritized packets compete for
a service according to RRGS. Then, in steps
6-9, the remaining packets compete once again
for the given time slot according to RRGS.
Steps 6-9 are optional, they will increase the
e�ciency of WRRGS, but introduce an ad-
ditional average pipeline delay of N=2 time
slots. They, actually, represent a service for
the best-e�ort tra�c. Note that in RRGS in-
put 0 is always the �rst to pick up an output,
while in originally proposed RRGS all inputs
get chance to be the �rst to choose an output
[8]. In the latter case an input might reserve
an output in the earlier time slot for the later

time slot in future, in other words, it might
interchangeably reserve outputs for di�erent
frames. So, each queue should be assigned
multiple counters related to di�erent frames.

2.2 Pipelined WRRGS

Let us �rst consider steps 1-5 of the pipelined
WRRGS. WRRGS as outlined in the previ-
ous section is easy to implement by using a
pipeline technique. In time slot k, input i re-
serves an output for time slot k+N � i within
frame b(k+N�i)=Fc, where bxc is the largest
integer not exceeding x. Also, input i resets
its counters cij ; 0 � j � N � 1; in time slots
lF+1�N+i, where l � dN=F e, and dxe is the
smallest integer not smaller than x. Time di-
agram for this �rst case of WRRGS applied in
a 5� 5 switch is shown in Figure 3. This �g-
ure shows the relation between inputs and the
time slots for which they are choosing their
outputs. For example, in time slot T5, in-
put I1 is scheduling or choosing an output for
transmission during time slot T9, while I3 is
scheduling for time slot T7 and so on. After it
chooses an output, e.g., input I1 forwards the
control information (about available outputs)
to input I2 which reserves an output for time
slot T9 in the next time slot T6. Bold vertical
line denotes that input I0 starts a new sched-
ule choosing any of the outputs, i.e. it does
not receive the control information from input
I4. Pipelining proposed for RRGS in [8] might
be applied to WRRGS in order to equalize in-
puts. Time diagram for this case of WRRGS
applied in a 5 � 5 switch is shown in Figure

4. Here, in each time slot another input starts
a schedule. But, an input might interchange-
ably reserve outputs for di�erent frames. For
example, input I0 reserves an output for time
slot T11 in time slot T6, and it reserves an out-
put for time slot T9 in the next time slot T7. If
the frame length is F = 5, then input I0 inter-
changeably reserves outputs for frames F1 and
F2. For a reasonable assumption that F � N ,
an input might interchangeably reserve out-
puts for at most two consecutive frames. So,
each queue should be assigned two counters
related to these two frames. A counter of the
earlier frame will be reset every F time slots.
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Figure 3: Time diagram for the switch controller. N = 5.
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Figure 4: Time diagram for the switch controller with input equalization. N = 5.
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Figure 5: Time diagram for the switch controller which serves additional best-e�ort tra�c.
N = 3.



Depending on the future time slot for which an
input reserves an output, a speci�ed counter of
the chosen queue will be decremented by one.
Let us now consider all 1-9 steps of the

pipelined WRRGS, including service of the
best-e�ort tra�c. In any time slot k, each in-
put chooses outputs for two di�erent time slots
in future, k+N�i and k+2�N�i within frames
b(k+N � i)=Fc and b(k+2 �N� i)=Fc. First,
an input reserves an output with the positive
counter for time slot k + 2 �N � i, then, it re-
serves any output for time slot k+N�i. Also,
input i resets its counters cij ; 0 � j � N�1; in
time slots lF+1�2�N+i, where l � d2�N=Fe.
Figure 5 shows the time diagram for all 1-9
steps of WRRGS applied in a 3�3 switch. For
example, in time slot T7, input I1 chooses one
of the available prioritized outputs for time
slot T12, and then it chooses any of the avail-
able outputs for time slot T9. This is because
input I1 uses its �rst chance to schedule for
time slot T12 in time slot T7, and, therefore,
it considers only queues with positive coun-
ters. On the other side, input I1 uses the sec-
ond chance to schedule for time slot T9 in time
slot T7, and, therefore, it considers all queues
for service. It is possible to equalize inputs as-
suming service of the best-e�ort tra�c as well.

2.3 Protocol Performance

It is essential to determine the portion of the
switch capacity that a scheduling algorithm
can share among the inputs. More precisely,
we want to determine the maximum admissi-
ble utilization, p, of any input or output line:

X
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pim =
1

F
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m

aim � p;

X

m

pmj =
1

F

X

m

amj � p;

0 � i; j � N � 1;

which can be guaranteed to the input-output
pairs. So, if input-output pair (i; j) requests a
new portion of bandwidth, �pij , it is accepted
if:

X

m

pim +�pij � p;

X

m

pmj + �pij � p;

and input-output pair (i; j) is assigned �aij =
�pij � F new time slots. We will prove that
p = 0:5 for the WRRGS, due to the fact that
the RRGS �nds a maximal matching between
inputs and outputs.

Theorem: The WRRGS protocol ensures
aij time slots per frame to input-output pair
(i; j); 0 � i; j � N � 1; if the following condi-
tion holds:
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pim �
1

2
,
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m

aim �
F

2
;
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m

pmj �
1

2
,
X

m

amj �
F

2
: (1)

Proof: We are viewing only prioritized
packets, as if WRRGS consists only of steps
1-5. Observe time slots within a frame in
which either input i or output j are con-
nected, but they are not connected to each
other. In each of these time slots, sum sij =P

m6=j cim +
P

m6=i cmj is decremented by at
least 1. Sum sij is the largest at the beginning
of a frame and from (1), it ful�lls:

sij =
X

m6=j

aim +
X

m6=i

amj � F � 2aij : (2)

As a conclusion, in at least 2aij time slots per
frame neither input i is connected to some out-
put other than j, nor output j is connected to
some input other than i. In at least aij of
these time slots (in which cij > 0), when in-
put i selects an output, it will choose output j
if there are packets in queue (i; j). This is be-
cause none of the inputs have chosen output j
before input i, and input i is not choosing any
other output. Therefore, input i will choose
output j as supposed by RRGS, and by any
other algorithm that �nds a maximal match-
ing between inputs and outputs. In summary,
if condition (1) is ful�lled then aij time slots
per frame are guaranteed to input-output pair
(i; j). 2

The above theorem holds for the WPIM as
well, considering the fact that PIM �nds a
maximal matching between inputs and out-
puts.

Admission control in WRRGS is simple,
new �aij time slots are assigned to input-



output pair (i; j) if:

X

m

aim + �aij �
F

2
;

X

m

amj +�aij �
F

2
: (3)

Central controller does not have to precom-
pute schedule when a new request is admit-
ted. Only input i has to update the value of
aij  aij+�aij ; 0 � j � N�1; in order to set
the correct counter value cij = aij at the be-
ginning of each frame. Consequently, WRRGS
can follow fast changes of tra�c pattern.

3 Conclusion

We presented very simple way to exibly share
bandwidth in switches with input bu�ering.
The simplicity of the proposed protocol makes
it attractive for switching of several Tb/s, as-
suming the current technology. We have also
shown that the proposed WRRGS can share
at least 50% of the total switch capacity.

WRRGS has several desirable features.
First, WRRGS algorithm can serve tra�c with
fast varying bandwidth requirements such as
variable bit rate (VBR) tra�c. For example,
bit-rate of video streams changes on a millisec-
ond time-scale. Second, WRRGS requires sim-
ple processing: only two round-robin choices
are to be performed within one time slot. So,
it can switch short cells transmitted at high
bit-rates. In addition, a linear structure of the
central controller easily scales to accommodate
a large number of input and output ports, and
provide high switching capacity.
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