
Scheduling of Multicast Tra�c in
High-Capacity Packet Switches

Aleksandra Smiljani�c, Member, IEEE

Abstract| Switches with input bu�ers are scalable due to
their simplicity. In these switches, the port that sources a

multicast session might easily get congested as it becomes
more popular. We propose that destination ports should for-
ward copies of multicast packets to other destination ports
in a speci�ed order. In this way, the multicast tra�c load is
evenly distributed over the switch ports. Packets are sched-

uled according to the weighted sequential greedy algorithm.

I. Introduction

As the Internet grows, high-capacity switches are needed.
Also, the network should be more e�ciently utilized, and
better quality of service should be provided to users. For
these reasons, explicit routing with bandwidth reservations
and delay guarantees has been supported with frameworks
such as RSVP and MPLS. Since applications on the In-
ternet have a wide range of bandwidth requirements and
holding times, high-capacity packet switches should be de-
signed to support agile bandwidth reservations with �ne
granularity. Packet switches with input bu�ers can poten-
tially provide high capacity because they require minimal
bu�ering speed and switching fabric complexity [1]. But
a switch with input bu�ers requires a more complex con-
troller than a switch with output bu�ers where packets in
di�erent output bu�ers are scheduled independently [2],
[1], [3]. We have proposed the weighted sequential greedy
scheduling (WSGS) protocol to be applied in switches with
input bu�ers [4]. The implementation of the WSGS scales
well by using a pipelining technique. The WSGS provides
agile bandwidth allocation due to its simple admission con-
trol. These features of the WSGS provide motivation to
extend it to support multicast tra�c as well.
Multicast tra�c is transmitted from one source to mul-

tiple destinations (we will call them a multicast group).
The diverse Internet includes a signi�cant amount of mul-
ticast tra�c. Today, a source usually sends a copied multi-
cast packet separately to all destinations. In this case, the
source and some links close to it might become overloaded.
Alternatively, multicast packets could be sent along precal-
culated multicast trees. Here, a packet is copied at branch
nodes of the tree, so the transmission load is distributed
over those nodes, and the links closer to the source carry
less tra�c. Signaling and processing required to calculate
these multicast trees is burdensome in wide area networks
with a large number of nodes and edges [5], [6]. For the
given switch sizes, the number of nodes increases faster
than linearly with the capacity required by end-users, be-
cause of the increasing number of transit switch ports. This
observation amounts to the importance of high-capacity
switches for simple network control, e�cient port utiliza-
tion, and, consequently, support of multicast tra�c on the

Internet.

It has been recognized that large switches with input
bu�ers do not well support multicasting of popular con-
tent with large fan-outs (numbers of destinations). For
example, it was shown in [7] that a three-stage Clos switch
requires a speed-up equal to the maximum fan-out to en-
sure strict non-blocking. We have shown, [4], that the non-
blocking condition in a cell-based switch with input bu�ers
and a three-stage Clos circuit switch are equivalent. So, a
cell-based switch with moderate speed-up would not carry
popular multicast sessions properly. In addition, users at-
tached to the port that multicasts popular content would
be clogged. However, the multicast transmission load can
be distributed over the multicast destination ports. We
propose that the multicast destination ports should for-
ward the multicast information through the switch to the
other destination ports that have not received it yet. Pack-
ets are scheduled according to the WSGS protocol. A
switching fabric with moderate speed-up run by the pro-
posed algorithm is non-blocking for an arbitrary multicast
tra�c pattern.

II. Weighted Sequential Greedy Scheduling

We proposed earlier a practical way to schedule uni-
cast tra�c in high-capacity switches [4]. Our approach
is sequential greedy scheduling based on credits. We will
present this approach for the sake of completeness. In-
puts choose outputs one after another in a pipeline fashion.
Packets are stored in di�erent queues according to their
destinations, so that the information about any queue sta-
tus (empty or non-empty) and its heading packet is readily
obtained. Such an input bu�er organization is often re-
ferred to as a bu�er with virtual output queueing (VOQ)
[1]. A schedule for one time slot is calculated in multi-
ple earlier time slots, and multiple schedules are calculated
in each time slot. Here, the schedule is a set of input-
output pairs to be connected in a time slot, so that inputs
in question transmit packets to outputs to which they are
connected. Figure 1 shows the time diagram for pipelining
where in each time slot, only one input selects an output
for a particular time slot in the future. If Ii ! Tk is as-
signed to some time slot Tj, it means that input Ii reserves
an output for time slot Tk, and this reservation is made
during time slot Tj . Bold vertical lines enclose a calcula-
tion of one schedule, which lasts N time slots in the given
example. Here N denotes the number of input and output
ports. In the more general case, in any time slot multiple
inputs might select outputs for some future time slot, or
it might take multiple time slots for an input to select an

F=6F=6

2 4TI 3 4TI

T T T T T1 2 3 4 5 T12T6 T T T T7 8 9 10

T6I

I T TI

6I TI T6

I T I T

TI

I TI TTI

I TI

I TI T TI

I T TI

I TI T

I T

I TI TTI

TI

I T

I TI TTI4

5 5

7 7 7

8 8 T8

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14

15

2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2

1

TI

T

5

I1

1I T3

T2 I T3

2

33I

11T

Fig. 1. Pipelining of the sequential scheduling protocol in a 3� 3 switch.

output for a future time slot.
Time is further divided into frames comprising a �xed

number of time slots, F (as shown in Figure 1). Input-
output pairs are guaranteed negotiated numbers of time
slots (credits) per frame. Before some input chooses an
output for the �rst time slot within a frame, its counters are
set to the negotiated numbers of credits. In the example
shown, input i sets its counters cij to negotiated values
aij, cij = aij; 1 � j � N , in time slots k � F � N + i,
k � 1. Only queues with positive counters would compete
for service, and whenever a queue is served its counter is
decremented by 1. After inputs schedule packets from the
queues with positive counters, they might schedule packets
from the remaining queues in the same pipelined fashion,
as was described in [4]. In this way, best e�ort tra�c can
be accommodated if there is some bandwidth left after the
higher priority tra�c is served.
The pipelined sequential greedy scheduling algorithm is

easy to implement, and it scales well with increasing num-
ber of ports and decreasing packet transmission time. An
advantage of the proposed protocol is that it requires com-
munication only among adjacent input modules, and, con-
sequently, the simple scheduler implementation as shown
in Figure 2. Also, by using pipelining the requirements
on the speed of electronics are relaxed. In addition, the
WSGS implies an extremely simple admission control pro-
tocol that provides agile bandwidth reservations. When
bandwidth bij is requested by input-output pair (i; j), then
aij = dbij � F=Be time slots per frame, i.e. credits, should
be assigned to it. Here, B is the port bit-rate. We have
shown earlier ([4]) that the bandwidth can be allocated to
input-output pair (i; j) if the following condition holds:

Ti +Rj � F + 1: (1)

where Ti =
P

k aik is the transmission load of input i, and
Rj =

P
k akj is the reception load of output j. Conse-

quently, the bandwidth can be allocated in a switch if each
input and output are allocated less than half time slots per
frame. In other words, the switching fabric should have a
speed up of two, in order to pass the tra�c that does not
overload any of the outputs.

III. Balancing of the Multicast Traffic Load

If a multicast packet could be scheduled for transmission
to multiple destinations in the same time slot, the available

N

OUTPUT
MEMORY

INPUT MODULE 1

INPUT

MEMORY

OUTPUT
SELECTOR

BUFFER

INPUT MODULE N

OUTPUT
MEMORY

OUTPUT
SELECTOR

OUTPUT

SELECTOR

BUFFER

INPUT

BUFFER

INPUT

INPUT MODULE 2

OUTPUT

NN

Fig. 2. Central controller implementing sequential greedy scheduling
protocol.

bandwidth might depend on the multicast tra�c pattern.
The corresponding admission control protocol would be in-
tricate, because it must consider the multicast tra�c pat-
tern. Also, some high-capacity switching fabrics do not al-
low the transmission of a packet to multiple destinations at
the same time [8]. In the simplest implementation of both
the scheduler and the switching fabric, multicast packets
are independently scheduled for di�erent outputs in a mul-
ticast group according to the described greedy algorithm.
This algorithm is scalable, and implies simple admission
control. However, if an input sends a multicast packet seri-
ally to all designated outputs, its bandwidth will be wasted
in multiple transmissions of the same packet. Let's denote
the bandwidth of multicast session (i; s) sourced by input
i by bmis, the set of outputs that receive the multicast infor-
mation by multicast groupMis, and the number of outputs
in setMis by jMisj � N . Note that for a unicast session
jMisj = 1. If the input sends multicast packets separately
to all outputs in the multicast group, their transmission will
consume bandwidth equal to bmis � jMisj. In high-capacity
switches, a multicast fan-out might get large, and a pop-
ular multicast session would clog the port. If, e.g., 250
ports request the multicast session of 10Mb/s, the source
port would consume 2.5Gb/s for the transmission of this
session. So, all users attached to the OC-48 port would be
clogged due to the popularity of a single session. Since the
popularity of some content varies over time, it is also not
wise to dedicate the entire OC-48 port to the content in
question. Namely, as its popularity fades away, the OC-48

port would remain underutilized. Generally, utilization of
the port capacity becomes low when a signi�cant amount of
multicast tra�c that it transmits has a large fan-out. The
performance degradation is more severe in a high-capacity
switch with the large numbers of ports, N .
Let us observe that once any port from the multicast

group receives a multicast packet, it may as well forward it
to P � 1 ports of that multicast group which have not re-
ceived the packet. Here, each port comprises one input and
one output. In this way, the transmission burden would be
balanced over all ports in the multicast group if the for-
warding fan-out P is chosen to be adequately small. We
have seen that for P = N , a multicast packet can be trans-
mitted to all outputs within one frame, but a large number
of credits might have to be allocated for the multicast ses-
sion and the input port would get clogged. On the other
hand, if each port forwards a packet to only one port, i.e.
P = 1, then each port uses a small additional capacity
for forwarding, but the multicast packet might experience
delay of up to N frames. Namely, in the worst case, a
packet would be forwarded only once per frame. This de-
lay would become excessive in a high-capacity switch with
large numbers of ports N , and large frame length F . Ap-
parently, there is a trade-o� between utilized capacity and
packet delay that depends on the chosen parameter P .
We will analyze the switch capacity that can be guaran-

teed to its ports in terms of the parameter P . The band-
width demand and the packet forwarding order determine
the credit allocation. It follows from equation (1) that
credits can be assigned to some input-output pair (i; j) if
it holds that Ti + Ei + Rj � F + 1, where Ti is the num-
ber of time slots per frame reserved for packets that are
transmitted by input i, Ei is the number of time slots per
frame reserved for input i to forward its multicast pack-
ets, and Rj is the number of time slots per frame reserved
for packets bound to output j. In the worst case, input i
should forward all packets that it receives, and Ei = P �Ri.
It is fairly easy to show, that the maximum capacity can
be utilized for an arbitrary tra�c pattern if for all ports,
1 � i � N , the following conditions hold:

Ti �
F + 1

P + 2
;

Ri �
F + 1

P + 2
: (2)

So, the maximum portion of the port capacity that can be
reserved is 1=(P + 2). Note that the admission conditions
agree with our previous result for unicast tra�c when P =
0, see [4]. Here, a port capacity is the bit-rate at which data
is transmitted from an input port through the switching
fabric to an output port. Therefore, it could be referred to
as the internal port capacity. In other words, the switching
fabric requires a speed-up of P + 2 in order to pass all the
tra�c admissible by outputs. The port hardware facing
the network is fully utilized.
Next, we will calculate the packet delay in terms of the

parameter P . Let us assume that a multicast packet of
session (i; s) is forwarded to all outputs within S frames.

In the �rst frame, the port that receives the packet from
an input forwards it to P ports. In the kth frame, P k�1

ports forward the packet to P k other multicast ports. Since
jMisj > 1+P + : : :+PS�2 = (PS�1�1)=(P �1), it holds
that:

S < logP ((P � 1) � jMisj+ 1) + 1: (3)

The switch capacity that can be utilized equals C =
N �B=(P +2). There is an obvious trade-o� between gran-
ularity of bandwidth reservations G = B=F and packet
delay D = S � F � T , where B is the port bit rate, and
T is the packet transmission time. Assuming that P = 2,
B = 10Gb/s, T = 50ns, we calculate C, G andD in Table I
in terms of N and F . As the frame length is increased, the
granularity is re�ned, but the packet delay is prolonged.
However, the packet delay does not increase signi�cantly
with the switch size. Since packets would pass through a
small number of high-capacity switches, the long packet
delay through one switch could be tolerated even by delay-
sensitive applications (voice and video conferencing). The
frame length should be chosen according to the require-
ments of these applications, and the granularity could be
further re�ned for other applications by sharing the credits.

TABLE I

The quality of the switch service

104

103

105 104 10

4x10 3

5

0.1

2.5 2.5 10 10

1 0.1

5

1

50 5.5 55

N

F

[Mb/s]G

[ms]D

[Tb/s]C

Table I shows that the forwarding fan-out of P = 2
would provide satisfactory packet delay through a swith.
For P = 2, the switch utilization is 1=(P + 2) = 25%.
In [9], an unfortunate multicast tra�c pattern was found
for which the capacity utilized by greedy scheduling algo-
rithms drops below 40% for large switches. By forwarding
multicast packets, our algorithm still guarantees a signi�-
cant portion of the switching capacity for arbitrary tra�c
pattern. In addition, the proposed protocol would switch
all the tra�c that can be admitted by output ports.

IV. Scheduling of Multicast Traffic

When a new multicast session is requested, an admission
controller checks if there is enough spare capacity according
to condition (2). If some outputs request to join an exist-
ing multicast session, the admission controller needs only
to check if that output has enough spare capacity for this
session reception. In the more general case, only a subset
of multicast outputs have enough spare capacity, and they
are admitted. Whenever a new multicast session is admit-
ted, the order in which packets are forwarded by ports in
the multicast group should be calculated. Also, whenever
some outputs are joining or leaving an existing session, the
forwarding order should be updated. Obviously, when a

multicast session is initiated, or when multiple ports are
joining or leaving a session, they would do so sequentially,
one after another.

Forwarding order is described by a forwarding tree in
which nodes represent ports, and each port forwards pack-
ets to the ports that it reaches through its branches. We
propose the following simple algorithm for adding and re-
moving a port to the tree. Each port of the tree should store
the parent (previous) port and the children (next) ports.
Each port should also store its branch fan-outs, where the
branch fan-out is the number of ports that could be reached
through that branch. A request for adding a port to the
multicast group is sent to the tree root. It then travels
through the tree, always taking the branch with the small-
est fan-out. The fan-out of every branch that this request
passes is increased by one. The new port is added as the
leaf to the tree (the port without children) that is reached
by the request through the shortest tree path. Similarly,
when a port wants to leave the tree it sends a request to
the tree root. This request now travels through branches
with the largest fan-outs until it gets to a leaf, and the fan-
outs of these branches are decremented by one. This leaf at
the end of the longest tree path will replace the port that
is leaving the multicast session. The port to leave sends,
along with the request, the information about its parent
and children ports, as well as about its branch fan-outs, so
that the chosen leaf would store these parameters. Then,
this leaf port informs its parent to stop forwarding packets
to it, and the parent of the port leaving to start forwarding
packets to it. By adding the new port to the tree at the
end of its shortest path, and replacing the leaving port by
the leaf of the longest path, the tree is kept in balance, and
the forwarding delay is minimized. We believe that in this
way, minimalmemory and processing per port are required
for tree calculation and updates.

Figure 3 shows how a new port is added to the multicast
group, while Figure 4 shows how a new port is removed
from the multicast group. Both �gures assume P = 2.
Nodes in the shown directed graphs denote ports. Edges
(branches) denote forwarding. The encircled branch fan-
out denotes the number of ports reached by multicast pack-
ets using that branch. In Figure 3, port 11 requests to join
the multicast group. It sends the request to port 9, which
is the multicast input and the tree root. This request is
forwarded along the branches with the smallest fan-outs as
shown by the dashed line. Branch fan-outs are updated as
shown. Port 11 is added as a leaf to the tree after port 7,
which will forward multicast packets to it in the future. In
Figure 4, port 4 requests to leave the multicast group. It
sends the request to input port 9. This request is forwarded
along the branches with the largest fan-outs as shown by
the dashed line. Port 8, which is the leaf, is chosen to re-
place port 4 on leave. Port 8 informs ports 6 and 2, its
parent and the port 4 parent, that it will replace port 4, so
that port 6 should stop forwarding packets to it, and port
4 should start forwarding packets to it. Each port has to
store only three ports and two fan-outs in its forwarding
table for each multicast session.

1

1

3

2

7

9 2

3

4

7

10

60

6

100

20

8

15

1

1

1

1

3

11
1

18

2 3

5 6

27

Fig. 3. Adding a port to the multicast group

3 2

2

1

9 2

10

7

18

20

100

15

8
6

60

3

4

5

3

1

1

1

1

2

7 6

1 0

27

Fig. 4. Removing a port from the multicast group

When a new multicast session is initiated, or an old
one is terminated, a multicast input updates its credits
(aip(i) aip(i) � amis, where i is the multicast input, and
it forwards packets to output p(i)). Similarly, when a port
joins or leaves a multicast session, it will update its negoti-
ated credits (ajpk(j) ajpk(j)� a

m
is, where port j forwards

packets to the port in question pk(j)).

The admission of a multicast session can also be
pipelined. In addition, the multicast session may be re-
leased in a pipelined fashion. Such pipelined admission
control might better utilize the available bandwidth. For
example, the bandwidth for a multicast session is reserved
in one frame, but packets are transmitted only to the �rst
port in the forwarding tree in the next frame. So, the
bandwidth reserved for forwarding of these multicast pack-
ets to the rest of the ports is wasted because they have
not arrived into the appropriate queues yet. But since the
input transmits packets to the �rst port in the forwarding
tree within one frame, then the bandwidth for forward-
ing packets by this port should be reserved in the same
frame (which is one frame after the bandwidth has been
reserved for transmission from input), and so on. Sim-
ilarly, when a multicast session has ended, the input will
stop transmitting packets, but packets that were previously
transmitted might be forwarded through the switch for a
while. Alternatively, the bandwidth reserved for forward-
ing of multicast packets from the �rst port in the forward-
ing tree should be released one frame after the bandwidth
reserved for transmission from the multicast input has been
released, and so on. The pipelined admission control can
be summarized as follows. Input i reserves the bandwidth
for transmission to port j 2 P1 = fp(i)g by updating the
assigned credits in some frame t if conditions (2) for i and
j 2 P1 hold. Then, port j 2 P1 reserves bandwidth for
packet forwarding to ports j 2 P2 = fp1(j); :::; pP (j)g for
which conditions (2) hold, by updating the assigned cred-
its in frame t + 1. In general, ports j 2 Pl reserve the
bandwidth for packet forwarding to the associated ports
j 2 Pl+1 = fpk(j)jj 2 Pl; 1 � k � Pg for which conditions
(2) hold, by updating the assigned credits in frame t + l.
Similarly, if this multicast session ends in frame t, input
i releases the bandwidth reserved for port p(i) in frame
t, and ports j 2 Pl release the bandwidth reserved for for-
warding packets to their associated ports j 2 Pl+1 in frame
t+ l, by updating their associated credits.

In summary, when a new multicast session is requested,
or a port joins an existing multicast session, the appro-
priate admission conditions are checked. If the bandwidth
request is granted, the forwarding tree is modi�ed, and the
credits of the associated ports are updated. Before an in-
put chooses an output for the beginning of some frame,
its counters are set to their negotiated numbers of credits,
cij = aij; 1 � i; j � N . Packets are scheduled accord-
ing to the previously described pipelined WSGS in which
the queues with positive counters are served with priority.
When a multicast session is terminated, or a port leaves
the session, the forwarding tree is modi�ed and credits of
the associated ports are updated. Note also that the switch

does not have to control the admission if enough bandwidth
is provisioned to the users attached to each port (i.e. sum of
the users' peak bit-rates is smaller than the port bit-rate).
In that case, a transmitting user should only check if the
destination user can receive the data at the speci�ed rate.
If it can, then the transmitting user sends data during the
time slots whose number per frame has been negotiated.

V. Reliability Considerations

When a port in the multicast group fails, all ports be-
longing to the multicast subtree rooted at this port will
not be receiving multicast packets, because the failed port
will not be forwarding these packets. So, when the port
fails it should be replaced by some of the tree leaves in
a way described earlier. However, the port is not aware
of its failure in advance, so it cannot signal its departure
from the multicast group. As the port fails, its forwarding
table might become also unavailable. For this reason, it
would be advantageous for a port to store not only its par-
ent, children ports and branch fan-outs, but also, e.g., its
grandparent (parent's parent), sibling (parent's children)
ports and branch fan-outs of the parent port. For exam-
ple, in Figure 3, port 10 stores its parent port 4, its child
port 18, and the fan-out of branch 10-18 as before, but also,
its grandparent port 2, sibling port 7, and the fan-outs of
branches 4-7 and 4-10. In this way, when a port fails, and
the failure is detected (e.g., by the children of that port)
its children inform the root about this failure, and send to
the root information about the parent, children and branch
fan-outs of the failed port, so that a chosen leaf port could
replace the failed port in a forwarding tree in a manner sim-
ilar to that described above. After this replacement, the
new port would learn about its grandparent, sibling and
branch fan-outs of the parent port, by using a speci�ed
signaling procedure. In summary, each port should store
up to 4P+1 entries (P children ports, P branch fan-outs, 1
parent port, 1 grandparent port, P parent branch fan-outs,
P � 1 sibling ports).
In an alternative approach, each port could store its

grandchildren ports, and its children branch fan-outs.
When a port recognizes that its child port failed, it would
inform the tree root and send the required information
about this failed port (about its children, and branch fan-
outs). As before, some leaf port will replace the failed port,
and it will learn from its children about its grandchildren,
and children branch fan-outs. In this case, each port should
store 2P (P + 1) entries. Signaling of the failure is some-
what simpli�ed in this latter approach, because there is
only one parent of a failed port that will inform the tree
root, whereas in the former reliability enhancing scheme,
all the children of the failed node would inform the tree
root about the failure.

VI. Conclusion

We proposed the scheduling protocol for exible band-
width allocation in high-capacity switches that support
multicast tra�c. In a network with a large number of
low capacity switches, the network control is hindered by

required signaling and high complexity admission control
algorithms. Our protocol takes advantage of today's high
capacity switching fabrics. The proposed centralized sched-
uler can make fast decisions and provide agile resource
allocation. Multicast packets are forwarded through the
switch, so that their transmission is balanced over the
switch ports. As a result, a switch with a moderate speed-
up transports contents whose popularities change arbitrar-
ily in magnitude and over time. Since the proposed switch
is non-blocking, it will pass an arbitrary tra�c pattern as
long as the output ports are not overloaded. The non-
blocking property of the high-capacity switch signi�cantly
simpli�es provisioning and network planning.

Acknowledgement: I thank Nick Frigo, Sheri Wood-
ward and Bob Doverspike from AT&T Labs for their com-
ments.

Aleksandra Smiljani�c (M '96) received M.A.
and Ph.D. degrees in electrical engineering
from Princeton University in 1996 and 1999,
respectively. She completed B.Sc. in electri-
cal engineering at Belgrade University in 1993.
She has worked for AT&T Labs since 1999
on communication protocols and optical net-
works. She worked for two summers at NEC
USA designing a packet switch with terabit ca-
pacity. Aleksandra has taught several courses
at Princeton and Belgrade Universities.

Aleksandra Smiljani�c is the author of the Best Papers at the IEEE
Conference on High Performance Switching and Routing 2000, and
IEICE/IEEE Workshop on High Performance Switching and Rout-
ing 2002. She is a recipient of the Aleksandar Damjanovi�c Prize as
the best student in her class at Belgrade University, 1993. Before
university, she won numerous prizes in Yugoslav and international
competitions in mathematics and physics.

References

[1] N. McKeown et al., \The tiny tera: a packet switch core," IEEE
Micro, vol. 171, Jan.-Feb. 1997, pp. 26-33.

[2] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker,
\High-speed switch scheduling for local-area networks," ACM
Transactions on Computer Systems, vol. 11, no. 4, November
1993, pp. 319-352.

[3] A. Mekkittikul, and N. McKeown, \A practical scheduling al-
gorithm to achieve 100% throughput in input-queued switches,"
IEEE INFOCOM, March 1998, pp. 792-799.

[4] A. Smiljani�c, \Flexible bandwidth allocation in high-capacity
packet switches," IEEE/ACM Transactions on Networking, vol.
10, April 2002, pp. 287-293.

[5] S. Chen, K. Nahrstedt, and Y. Shavitt, \A QoS-aware multicast
routing protocol," IEEE Journal on Selected Areas in Commu-
nications, vol. 18, no. 12, December 2000, pp. 2580-2592.

[6] C. Chiang, M. Sarrafzadeh, and C. K. Wong, \Global routing
based on Steiner Min-Max trees," IEEE Transactions on Com-
puter Aided Design, vol. 9, no. 12, December 1990, December
1990, pp. 1318-1325.

[7] M. Listanti, and L. Veltri, \Non blocking multicast three-
stage interconnection networks," IEEE GLOBECOM, Deceme-
ber 1999, pp. 1401-1405.

[8] J. Gripp, P. Bernasconi, C. Chan, K. L. Sherman, and M. Zirn-
gibl, \Demonstration of a 1Tb/s optical packet switch fabric
(80*12.5GB/S), scalable to 128 Tb/s (6400*20Gb/s),"Postdead-
line Paper in ECOC 2000.

[9] A. M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F.
Neri, \On the throughput of input-queued cell-based switches
with multicast tra�c," Proceedings of IEEE INFOCOM, 2001,
pp. 1664-1672.

