
Frugal IP Lookup Based on a Parallel Search
Zoran Čiča and Aleksandra Smiljanić

School of Electrical Engineering, Belgrade University, Serbia
Email: cicasyl@etf.rs, aleksandra@etf.rs

Abstract—Lookup function in the IP routers has always been a
topic of a great interest since it represents a potential bottleneck
in improving Internet router’s capacity. IP lookup stands for the
search of the longest matching prefix in the lookup table for the
given destination IP address. The lookup process must be fast
in order to support increasing port bit-rates and the number of
IP addresses. The lookup table updates must be also performed
fast because they happen frequently. In this paper, we propose a
new algorithm based on the parallel search implemented on the
FPGA chip that finds the next hop information in the external
memory. The lookup algorithm must support both the existing
IPv4 protocol, as well as the future IPv6 protocol. We analyze
the performance of the designed algorithm, and compare it with
the existing lookup algorithms. Our proposed algorithm allows a
fast search because it is parallelized within the FPGA chip. Also,
it utilizes the memory more efficiently than other algorithms
because it does not use the resources for the empty subtrees. The
update process that the proposed algorithm performs is as fast as
the search process. The proposed algorithm will be implemented
and analyzed for both IPv4 and IPv6. It will be shown that it
supports IPv6 effectively.

I. INTRODUCTION

The number of hosts on the Internet is still increasing.
Also the Internet traffic continuously grows. As a result of
growth of the Internet population and traffic, high performance
routers are being developed to be used on the Internet. High
performance routers require fast IP lookups in order to avoid
congestion. Also routing protocols such as OSPF, BGP, etc.
often require updates of lookup tables. So, to avoid misrouting
of packets and therefore their loss or increased delay, routers
must perform fast updates of routing tables. The lookup
processor is together with the scheduler, the most intricate
part of the network processor as described in [1], [3], [4].
In [1]–[4], we implemented and assessed the performance of
the scheduler design. In this paper, we propose the IP lookup
processor that will easily integrate with other modules of the
network processor which is based on the FPGA technology.

The fastest lookup solution is based on the ternary CAMs
(Content Addressable Memory). Ternary CAM performs the
search in only one cycle. It is achieved by the comparison
of the given IP address with all the prefix entries in parallel,
but downside is that they are expensive and, also, they are
not very scalable. Other approaches are based on the lookup
table with the trie structure. In this case, the lookup process
consists of traversing through the trie structure in order to
find the solution. The first trie structures were binary, but
for faster performance multibit trie structures were introduced
so the trie has less levels and therefore better worst case
speed. Also, many techniques were used to improve the lookup

speed such as the trie compression [5], [6], leaf pushing [7],
prefix transformation, hash functions [8] etc. Those techniques
usually provide faster lookup times, at the cost of slower
updates.

One of the first compression techniques was the path
compression. The path compression stands for the removal
of one-way branch nodes of a trie since no decision is made
in those nodes. In LC-tries, the level compression is used to
minimize the number of the trie levels by using adaptive stride
lengths and, thus, they get faster [5]. Also, redundancy in a
trie can be explored and the compression could reduce the trie
based on found redunandancies [9]. Leaf pushing technique is
often used in multibit tries. Since a multibit trie contains only
some levels of a binary trie, the levels that are not visible in
the multibit trie might contain some nodes that have the next-
hop information. So, it is neccesseary to push the next-hop
information from those internal nodes that are not visible to
their offspring nodes at the first visible level in the multibit
trie. Sometime, the prefix transformation is used, and it is
usually an extension of the prefix to have a specified length
[10]. Also, in some algorithms, modifications of the classical
trie structures can also be found [11].

In [12] basic goals and assumptions for efficient IP lookup
were introduced. The main goal for a good IP lookup algo-
rithm is that it should be fast and easily implementable. In
particular, a good lookup algorithm should require minimal
number of accesses to the external memory, and easy updates.
A good overview of lookup algorithms is given in [13].

Our algorithm is based on a multibit trie. Such algorithms
traverse through the trie using m-bit strides to decide which
node in the trie is next. Lookups are faster for longer strides,
but the memory requirements are higher. For example, if the
stride is s=32 bits long then the lookup would be performed
in one step, but 232 memory locations would be needed. The
multibit trie algorithms might require the excessive time to be
completed since they require many accesses to the external
memory. Our algorithm keeps the limited information about
the trie structure in the FPGA internal memory, so that it
can search the ranges of prefixes in parallel. Different, but
also parallelized lookup algorithm was proposed in [14], but
it was designed primarily for IPv4, and is not easily extended
to support IPv6. The data structure that describes the lookup
table (i.e. multibit trie) used by our algorithm is similar to
the one described in [15]. But in [15], different trie levels
are searched sequentially, and not in parallel, and the data
defining the trie is stored in the external memory. Also in
[15], the subtrees of different levels are connected via pointers



LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

8 BITS

8 BITS

8 BITS

8 BITS

Fig. 1. Multibit trie

so that empty subtrees occupy the memory, and updates are
slightly more complicated than in our algorithm. Algorithm
implemented in [16] is similar to the one implemented in
[15]. In [16], the subtree pointers to the next level subtrees are
organized so that their access is faster. Also, the programmable
FPGA chips are used for implementation of the algorithm
in [16] instead of the ASIC chips used in [15]. In our
algorithm, pointers are not used to determine the trie, and,
no information about empty subtrees is stored which saves
the memory and the registers. The output port addresses are
stored in the external memory at the locations which are
related to the locations of the corresponding trie entries in
the FPGA memory. Reduced memory requirements allow the
parallelized implementation of our algorithm on the FPGA
device. Such parallelization achieves higher speeds with the
minimal number of the external memories. In addition, the
update procedure in our algorithm is much simpler than in
other multibit trie algorithms and it is of the same simplicity
as the lookup procedure itself. For these reasons, the proposed
algorithm is suitable to support IPv6 as well.

The algorithm that we propose, and which we name the
parallelized frugal lookup (PFL) algorithm, will be described
in the next section. Its implementation will be analyzed in
Section 3, and its performance will be compared with the
performance of the previously proposed algorithms. The PFL
algorithm will be implemented and analyzed for both IPv4 and
IPv6 in Section 3. Section 4 concludes the paper.

II. PARALLELIZED FRUGAL LOOKUP (PFL) ALGORITHM

The parallelized frugal lookup algorithm, PFL, that we pro-
pose is based on the multibit trie, as we have just mentioned.
The multibit trie is split into the subtrees for the given stride
length. Each stride reaches a new subtree as shown in Figure
1. In Figure 1, IPv4 with 32 bits long IP addresses, and the
stride length of s=8 are assumed. Subtrees belong to different
levels depending on the number of strides required to reach
the particular subtree. The subtree prefix is the sequence of
bits that leads to that subtree. The PFL processor searches
a subtree at each level in a separate module. These modules
operate in parallel. In this way, the speed of the multibit trie
algorithm is multiplied by the number of levels. Concretely,
the design is speed up L/s times where L is the IP address
length and s is the stride length.

Architecture of the PFL processor is shown in Figure 2.
The design consists of the central module, the level modules
and the external SRAM. The level modules perform the
search and update at the corresponding levels, and the central

LEVEL
MODULE

i

i=1..4

CENTRAL
MODULE

Searchi

Addi

Clri

IP Addressi

Prefix Lengthi

Match Foundi

SRAM Addressi

IP Address

Prefix Length

Search

Add

Clr
New Next-Hop Info

SRAMSRAM Data
SRAM Address

Read/Write

Next-Hop Info

Fig. 2. The PFL processor

module selects the best solution found by the level modules.
The SRAM memory holds the next-hop information for the
given IP destination addresses of the incoming packets, most
importantly the output ports to which these packets should be
forwareded to. Using control signals Search, Add, and Clr,
the PFL processor is given the instruction which procedure
it should perform: search of the next-hop information for the
given IP address, adding a new prefix to the lookup table and
clearing the existing prefix from the lookup table. The central
module defines the type of operation that the level modules
should perform using these signals.

When they are commanded to search, each level module
returns the signal Match Found that indicates if the particular
level module found a match, and if so, it also returns the signal
with the SRAM address corresponding to the longest prefix
match of the given IP address. For the lookup update, the PFL
processor needs the Prefix Length to determine which part of
the IP address is the prefix, i.e. network address, that should be
added to the lookup table, or deleted from the lookup table.
Finally, when the central controller gets the SRAM Address
i, 1 ≤ i ≤ L/s, from the level modules for any of the
cases, it determines the resulting SRAM Address and uses it
appropriately, updates it or reads the Next-Hop Info from it.

A module that searches the subtree of a certain level is
shown in Figure 3. It comprises registers, combinatorial logic
and memory. Register k holds the prefix of the subtree whose
memory address is k. Match logic compares the IP address
prefix corresponding to the given level with the prefixes in
the registers. It possibly finds a match between the IP address
prefix corresponding to the level in question and the subtree
prefix from one of the registers. The output of the match
logic is the Match Vector which comprises zeros and one at
the position that corresponds to the register that contains the
prefix of the given IP address. One-hot decoder translates this
Match Vector into the Subtree Address of the corresponding
subtree. The subtree processor reads the Subtree Vector from
the memory. The Subtree Vector comprises bits that correspond
to the nodes in the subtree when they are numerated as shown
in Figure 4. In Figure 4, node k corresponds to the kth bit
of the Subtree Vector. Each node corresponds to one prefix.
A bit is set to one if the corresponding prefix exists in the



SUBTREE PREFIX1 SUBTREE PREFIXnRegisters

COMPARATOR COMPARATOR

IP address

Match Vector

ONE HOT DECODER

MEMORY BLOCK

Subtree
Address

SUBTREE
PROCESSOR

SRAM
Address

Match
Found

Search

Add

Clr

Prefix Length

Subtree Vector

Fig. 3. Architecture of a level module

PREFIX

Node 1 Node 2

Node 3 Node 4 Node 5 Node 6

Node 510Node 255 Node 256

Fig. 4. Subtree structure

network. Based on the Subtree Vector, the subtree processor
calculates the longest prefix of the IP address at the level in
question, as well as the corresponding SRAM address. The
number of subtrees at levels 1 and 2 are small enough (1 and
2s respectively) to store all subtrees in the memories making
the modules of these levels simpler in this way. In this case
which we implemented, the modules of levels 1 and 2 have
only the memory and the subtree processor. The subtree vector
is read from the single memory location of level 1, or based
on the first s bits from the memory of level 2.

The update process is very simple. It uses the same design
blocks as the search process shown in Figure 3. When the
lookup table is updated, the subtree address in the FPGA
memory has to be determined, as well as the SRAM address
of the next-hop information. The subtree address in the FPGA
memory is calculated by the match logic based on the sub-
tree prefix. Based on the prefix length and the IP address,
the subtree processor calculates the corresponding bit of the
subtree. This bit is set to 1 if a new prefix is to be added to
the lookup table, or to 0 if an existing prefix is to be deleted
from the subtree. The subtree processor calculates the SRAM
address where the next-hop information for the new prefix

will be written. When the SRAM address is calculated, the
next-hop information is written to SRAM. Speed of the update
process is as fast as the search process which is very important
property of our approach.

The subtree prefix is stored in a register, and the subtree
vector is stored in the memory of a module only if at least
one prefix from the subtree exists in network. Otherwise,
resources are not used for an empty subtree. In this way
PFL saves significant memory resources, of both the internal
FPGA memory and the external SRAM. Such a scheme is
implemented by associating one counter to each register. The
counters are initially set to 0. When a prefix belonging to
a new subtree is to be added, one of the registers with the
counter equal to 0 is chosen and the new subtree prefix is
loaded to this register. Whenever a new prefix of this subtree
is to be added, its counter is incremented by one. Whenever
an existing prefix is deleted from the subtree, its counter is
decremented by 1. When the counter of some subtree reaches
0, a new subtree can be stored in the FPGA memory and
SRAM in the space that was occcupied by the subtree whose
all prefixes were deleted. We use the register vector to keep
the information about the free registers, in which 1 indicates
that the corresponding register is free, and 0 that it is occupied.
The register vector is updated whenever some counter reaches
0, or becomes positive. A selector is used to fastly determine
which register to occupy by the new prefix to be added. The
selector is realized as the combinatorial logic.

In both cases, search and update, access to the FPGA
memory is needed for the logic to obtain or store the subtree.
The subtree vector is collected in the second clock cycle after
the FPGA memory address bus is set, therefore one empty
clock cycle would exist in a straightforward implementation.
To avoid this empty cycle, pipelining is introduced. In the
empty cycle, instead of waiting for the data, a new FPGA
memory address is set for the next update or the search
procedure, so there is no loss of the cycles. While the Subtree
Vector is read and processed, in that same cycle new FPGA
memory address can be set. Therefore, the level modules are
designed as the state machines with two states. In each state,
the level module sets the FPGA memory address and processes
the subtree vector which is located at the FPGA memory
address set previously in the same state - two clock cycles
earlier. Due to the pipelining, in each clock cycle, the level
module provides a result that comprises the indication if there
was a match or not, and if so, the SRAM address.

To summarize, the central module in each clock cycle
gets the information from the level modules. Based on the
information about matchings that have been found, it selects
the SRAM address of the level module which found the match,
and which processes the subtrees of the highest level compared
to other modules that found the matches. When the lookup
table is updated, only one level module is activated via the
corresponding control signals because the level where the
subtree is located is known from the prefix to be updated,
which is determined based on the IP address and the prefix
length. When the match is found, the appropriate action is



performed. In the case of search, the SRAM location is
accessed for reading the next-hop information; or, in the case
of adding a new prefix, the FPGA memory is updated and
the SRAM location is accessed for writing the new next-hop
information. In the case of deleting a prefix, only the FPGA
memory is updated. Note that in the case of deleting the prefix
which is the last in a subtree, only the register vector needs
to be updated, and the corresponding FPGA memory is not
accessed.

A slice of SRAM is associated to each level based on
the expected number of prefixes at that level. Each subtree
is allocated 2s+1 locations with the next-hop data which
include the output port addresses. The relative address of a
subtree within the SRAM slice allocated to its level, equals
the subtree address in the FPGA memory of the associated
level module (which also equals the index of the register with
the corresponding subtree prefix in the same module). This
relative address of the subtree within the memory allocated for
its level is determined by the match logic in the highest level
module that contains the prefix of the given IP address. This
highest level determines the memory slice. Finally, the subtree
processor of the highest level module finds the longest prefix
for the given IP address, and it determines the exact address
of the SRAM location within the memory slice dedicated to
this subtree.

III. PERFORMANCE ANALYSIS

Our goal for the PFL implementation is to fit it onto the low-
cost FPGAs. The PFL design was developed using Quartus II
8.1 software. Design was implemented and tested on the chip
from the Altera Cyclone II and III families, for IPv4 and IPv6
addresses, respectively. The stride length was taken to be s=8.
Besides the previously described design, its modification was
also implemented and tested. In this modified design only the
leaf nodes of the subtrees are memorized (like in the classic
multibit trie algorithms), so the memory requirements, for
both the FPGA memory and SRAM are 50% lower. However,
downside of this modification is the slower update processing,
since one update can affect more then one node. Namely, when
one node is deleted or added, several leaves might need to be
deleted or added as a result.

For the higher level modules, estimation of the required
memory resources is needed. As shown in some papers [5],
[15], for IPv4, the lengths of most prefixes fall in the range
from 16 to 24, so the largest memory is needed for the
level 3 module that contains the subtrees with prefixes whose
lengths are from 17 to 24. We examined the implementation
of the routing tables reported by IIT on their web page [17].
These routing tables contained from 32.5K entries (prefixes)
to 143K entries. We also wrote a program that gave us the
number of subtrees at each level for different routing tables,
so that we could analyze the implementations of these routing
tables on the FPGA chip. For the inspected set of the routing
tables, the highest number of the level 3 subtrees was 911,
and for the level 4 subtrees was 52. The memory will be
allocated to different levels of the routing table according to

these experimental results. The correct functioning of the PFL
design was confirmed for these examples. Alternatively, the
memory allocation to different levels can be made adaptive.
Namely, a mechanism can be implemented to change the
memory allocation whenever some slice of the memory starts
to fill up, i.e. the number of prefixes in this slice exceeds a
specified value.

Table I shows the performance of the design for the reported
routing tables of various sizes. In particular, Table I shows the
resource requirements and the maximum clock speed as the
performance measures. Since the pipelining is used, results
are acquired in every cycle, so the lookup completion time
is TMIN = 1/fMAX , and is also given in the table. One
can see that the worst case results lookup time is 34ns, which
corresponds to, approximately, 29 millions lookups per second.
Such fast lookup can be completed even for the shortest IP
packets whose length is 64B and the speed is 10Gb/s, i.e.
whose duration is 50ns. Since the update process is as fast
as the search process, the lookup time isn’t much affected
by the lookup table updates because they are occuring much
less frequently than the lookups themselves. Using the higher
performance FPGAs would increase the clock speed, thus
making the PFL implementation even faster. Further speeding
up can be achieved by running multiple instances of the PFL
algorithms in parallel. Table I gives also the required FPGA
resources such as the number of logic elements, registers,
and memory bits. This table also presents the number of
SRAM locations, where the location width is LW = 8 or
16, depending on how many bits are needed for the output
port ID.

Table II shows the same results for the modified design,
where only the leaf nodes are kept in subtrees. The modified
design requires two times less memory than the original one,
as was expected, and the clock speed improved very slightly.

The design in [16] is also implemented on the FPGA chip
whose family is comparable with the family of the FPGA
chip that we used. Comparing to the design in [16] which
was shown to perform approximately 10 millions lookups per
second for routing tables with up to 16.5K locations, our
design provides two times faster speed for the routing tables
on the order of magnitude larger (we tested lookup tables
with up to 143K entries). The PFL performance also does
not depend on the frequency of update processes as much as
does the design in [16]. In [15], the results depend on the type
of memory that is used, SRAM or DRAM, so the throughputs
are around 80 and 20 millions of lookups per second, when
SRAM and DRAM are used, respectively. Note that our design
was tested with the SRAM memory, but it could work with
the same speed when using the larger DRAM memory. The
results in [15] were obtained for smaller routing tables with
up to 41.8K entries. As we mentioned before, the memory
requirements for SRAM or DRAM in [15] are larger than in
our approach. Also, the design in [15] was not implemented
on the FPGA chip, but on the specialized, ASIC, chip which
is faster but more expensive and less flexible option for future
modifications.



TABLE I
PERFORMANCE OF PFL FOR IPV4

Level 3 subtrees Level 4 subtrees Logic elements Registers FPGA memory SRAM locations fMAX TMIN

512 128 31.7K 13.6K 463Kb 459K 38.1MHz 26ns

512 256 39K 16.8K 530Kb 525K 37.6MHz 27ns

1024 128 52.3K 22.3K 730Kb 721K 30.3MHz 33ns

1024 256 59.4K 25.5K 797Kb 787K 29.6 MHz 34ns

TABLE II
PERFORMANCE OF THE MODIFIED PFL FOR IPV4

Level 3 subtrees Level 4 subtrees Logic elements Registers FPGA memory SRAM locations fMAX TMIN

512 128 27.3K 12.9K 236Kb 230K 38.5MHz 26ns

512 256 34K 16K 270Kb 262K 39.3MHz 25ns

1024 128 49.1K 21.6K 372Kb 361K 30.6MHz 33ns

1024 256 55.9K 24.8K 406Kb 393K 31.2 MHz 32ns

TABLE III
PERFORMANCE OF PFL FOR IPV6

Level 4 subtrees Level 5 subtrees Level 6 subtrees Logic elements Registers FPGA memory SRAM locations fMAX TMIN

256 64 256 52.3K 23.1K 315Kb 394K 60.6MHz 16.5ns

1024 256 512 117.6K 55K 882Kb 1115K 45.4MHz 22ns

Finally, we analyzed our design for IPv6 tables. Today,
routing tables for IPv6 have small number of prefixes (up to
around 1.6K), and most prefixes have length 32 or 48 [18],
[19]. Other lengths are very rare, and most of them are between
lengths 32 and 48. We used table from [18] that had 1.6K
entries, where 94.9% were prefixes that have lengths of 32
or 48. Since IPv6 addresses are 128 bits long and the stride
length is still assumed to be s =8, there are 16 levels in the
PFL design for IPv6. Levels 4 and 6 have the largest number
of subtrees. Level 4 has 145 subtrees with prefixes whose
length is between 32 and 40 bits, and level 6 has 131 subtrees
with prefixes whose length is between 48 and 56 bits. Level
5 contains 46 subtrees, and other levels have significantly less
subtrees. In the PFL design, the levels 4 and 6 were allocated
the resources for 256 subtrees, and the level 5 was allocated the
resources for 64 subtrees, other levels received resources for 16
subtrees. Since the prefixes are longer then in IPv4 case, more
logic elements are needed, and, therefore, the IPv6 processor
was designed on the FPGA chip from the Cyclone III family.
Table III shows the performance of the PFL design for IPv6.
For the described lookup table with 1.6K entries, the design
achieved 16.5ns as the maximum lookup time that corresponds
to 60.6 millions of lookups per second. Chip resources can be
also observed in the table. IPv6 routing tables will continue to
grow, so we analyzed the design for larger routing table where
the level 4 was allocated 1024 subtrees and the level 6 was
allocated 512 subtrees, due to the fact that the number of 32-
bit prefixes is currently twice as high as the number of 48-bit
prefixes. The level 5 was allocated resources for 256 subtrees,
and other levels resources for 32 subtrees. If the current trend
of prefix distribution continues, the PFL design with these
resources should be sufficient for at least ten times larger
routing tables than the current ones. In this case, our design

achieved the maximum lookup time of 22ns that corresponds
to 45.37 millions of lookups per second, as shown in Table
III.

By comparing Tables I and III, one can see that for similar
number of subtrees, the PFL designs for IPv4 and IPv6 have
the same memory requirements. This is because the PFL
design does not use resources for storing the empty subtrees
which can be numerous in the case of IPv6 addresses. This is
very important because the FPGA memory is a scarce resource
which needs to be utilized as efficiently as possible. In this
way, the number of external memories is also minimized which
simplifies the design.

IV. CONCLUSION

We presented a novel lookup algorithm, PFL, which can
be effectively used for IPv6. It is based on a multibit trie
which is split into levels based on the stride length. The parts
of the lookup table belonging to different levels are searched
in parallel. The information about the multibit trie structure
is stored in the FPGA memory, so that it can be searched
very fast because the FPGA memory blocks can be accessed
in parallel. Because the FPGA memories are of a smaller
size than the external memories, a special attention must be
given to the memory usage. The PFL algorithm is designed
so that only the information about the non-empty subtrees is
stored. No information is stored about the empty subtrees.
This feature decreases the required FPGA resources and the
external memory size, and, consequently allows the support of
the IPv6 protocol.

The PFL algorithm was implemented and analyzed for both
IPv4 and IPv6. It was shown that it can be implemented on
the low cost FPGAs and achieve the sufficiently fast lookups.



REFERENCES

[1] M. Petrović, A. Smiljanić, M. Blagojević, ”Design of the Switching
Controller for the High-Capacity Non-Blocking Internet Router,” IEEE
Transactions on VLSI, accepted for publication

[2] M. Blagojević, and A. Smiljanić, ”Design of the Multicast Controller
for the High-Capacity Internet Router,” IET Electronic Letters, January
2008.

[3] M. Petrović, A. Smiljanić, ”Optimization of the Scheduler for the Non-
Blocking High-Capacity Router,” IEEE Communication Letters, June
2007.

[4] M. Petrović and A. Smiljanić, ”Design of the Scheduler for the High-
Capacity Non-Blocking Packet Switch,” IEEE Workshop on High Per-
formance Switching and Routing, Poznan, Poland, June 2006.

[5] S. Nilsson and G. Karlsson ”IP-Address Lookup Using LC-Tries,” IEEE
JSAC, vol. 17, no. 6, June 1999, pp. 108392.

[6] M. Degermark et al., ”Small Forwarding Tables for Fast Routing
Lookups,” Proc. ACM SIGCOMM 97, Sept. 1997, pp. 314.

[7] V. Srinivasan and G. Varghese, ”Fast Address Lookups using Controlled
Prefix Expansion,” Proc. ACM Sigmetrics 98, June 1998, pp. 111.

[8] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, ”Scalable High
Speed IP Routing Lookups,” Proc. ACM SIGCOMM97, Cannes, France,
pp. 2535.

[9] P. Crescenzi, L. Dardini, and R. Grossi, ”IP Address Lookup Made Fast
and Simple,” Proc. 7th Annual Euro. Symp. Algorithms, 2001.

[10] B. Lampson, V. Srinivasan, and G. Varghese, ”IP Lookups Using Multi-
way and Multicolumn Search,” IEEE/ACM Transactions on Networking,
vol. 7, no. 3, June 1999.

[11] T. Kijkanjanarat, H.J. Chao, ”Fast IP Routing Lookups Using a Two-trie
structure,” IEEE GLOBECOM 1999, vol.2, pp. 1570-1575.

[12] P. Gupta, S. Lin, N. McKeown, ”Routing Lookups in Hardware at
Memory Access Speeds,” Proc. IEEE INFOCOM 1998.

[13] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, ”Survey and
taxonomy of IP address lookup algorithms,” IEEE Network, vol. 15, no.
2, 2001, pp. 823.

[14] R. Rojas-Cessa, L. Ramesh, Z. Dong, L. Cai, and N. Ansari, ”Parallel-
Search Trie-based Scheme for Fast IP Lookup,” IEE Proceedings on
Computers and Digital Techniques, vol. 150, iss. 1, Jan. 2003, pp. 43
52.

[15] D. Pao , C. Liu, A. Wu, L. Yeung, K.S. Chan, ”Efficient Hardware Ar-
chitecture for Fast IP Address Lookup,” IEE Proceedings on Computers
and Digital Techniques, vol. 150, issue 1, Jan. 2003, pp. 43 52.

[16] D. Taylor, J. Lockwood, T. Sproull, J. Turner and D. Parlour, ”Scalable
IP Lookup for Programmable Routers,” Proc. IEEE INFOCOM 2002,
vol. 21, no. 1, June 2002, pp. 562-571.

[17] http://psp1.iit.cnr.it/∼mcsoft/ast/ast data.html
[18] http://bgp.potaroo.net
[19] http://www.caida.org


