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Abstract— As the traffic on the Internet grows, better quality of
service should be provided to users. We have proposed earlier the
weighted sequential greedy scheduling (WSGS) protocol that pro-
vides fast bandwidth reservations in terabit packet switches with input
buffers. In switches with input buffers, a port that sources a multicast
session might easily get congested as it becomes more popular. In this
paper, we extend WSGS to support varying popularity of content on
the Internet. Destination ports forward copies of multicast packets
to other destination ports in a specified order. In this way, the mul-
ticast traffic load is evenly distributed over switch ports. The perfor-
mance trade-off between capacity that can be reserved and guaran-
teed packet delay will be discussed.

I. INTRODUCTION

As the Internet grows, high-capacity switches are
needed. Also, the network should be more efficiently uti-
lized, and better quality of service should be provided to
users. For these reasons, explicit routing with bandwidth
reservations and delay guarantees has been supported with
frameworks such as RSVP and MPLS. Since applications
on the Internet have a wide range of bandwidth require-
ments and holding times, high-capacity packet switches
should be designed to support agile bandwidth reservations
with fine granularity. Packet switches with input buffers
can potentially provide high capacity because they require
minimal buffering speed and switching fabric complexity
[7]. But, they require a more complex controller than
switches with output buffers where packets in different out-
put buffers are scheduled independently [1], [7], [8]. We
have proposed the weighted sequential greedy scheduling
(WSGS) and an associated admission control protocol for
switches with input buffers [9]. The implementation of this
WSGS scales well by using a pipelining technique. The ad-
mission controller is agile since it performs a simple func-
tion. These features of the WSGS provide motivation to
extend it to support multicast traffic as well.

The appeal of the Internet lies in the variety of services
and content that it provides. A significant amount of traf-
fic on the Internet is multicast in nature, i.e. transmitted
from one source to multiple destinations (we will call them
a multicast group). Switching of popular content through
the Internet is troublesome. Today, the source usually sends
a copied multicast packet separately to all destinations. In
this case, the source and links close to it might become
overloaded. Alternatively, multicast packets could be sent

along precalculated multicast trees. Here, a packet is copied
at branch nodes of the tree, so the transmission load is dis-
tributed over those nodes, and links closer to the source
carry less traffic. The signalling and processing required
to calculate these multicast trees is burdensome in wide
area networks with a large number of nodes and edges [2],
[3]. Assuming that the Internet growth has an upper bound,
high-capacity switches would significantly reduce the num-
ber of nodes and edges in the network, and so more readily
provide quality of service in wide area network. However,
the processing bottleneck is moved to the single switch de-
sign.

It has been recognized that large switches with input
buffers do not well support multicasting of popular content
with large fan-outs (numbers of destinations). For example,
it was shown in [5] that a three-stage Clos switch requires
a speed-up equal to the maximum fan-out to ensure strict
non-blocking. We have shown, [10], that the non-blocking
condition in a cell-based switch with input buffers, and a
three-stage Clos circuit switch are equivalent. So, a switch
with a moderate speed-up would not carry popular multi-
cast sessions properly. In addition, users attached to the port
that multicasts popular content would be clogged. For this
reason, we propose that copies of multicast packets should
be forwarded through the switch by destination ports after
they receive those packets. Packets are scheduled accord-
ing to WSGS. In this way, simplicity and scalability of the
WSGS and admission control protocols are maintained, and
at the same time, the transmission load is balanced over dif-
ferent ports. We will discuss trade-offs between the capac-
ity and delay required for packet forwarding, and show that
a large portion of the port capacity may be reserved regard-
less of the traffic pattern. The proposed protocol flexibly
supports changing popularity of different content on Inter-
net. Implicitly, it allows a greater variety of content to be
accessed by users, which adds value to the network.

II. SCALABLE SCHEDULING PROTOCOL AND AGILE

ADMISSION CONTROL PROTOCOL IN THE CASE OF

UNICAST TRAFFIC

We proposed earlier a practical way to schedule uni-
cast traffic in high-capacity switches [9]. Our approach
is sequential greedy scheduling based on credits. We will
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Fig. 1. Pipelining of the sequential scheduling protocol in a 3� 3 switch.

present this approach for the sake of completeness. In-
puts choose outputs one after another in a pipeline fashion.
Namely, a schedule for one time slot is calculated in mul-
tiple earlier time slots, and multiple schedules are calcu-
lated in each time slot. Here, a schedule is the set of input-
output pairs to be connected in a time slot, so that inputs
in question transmit packets to outputs to which they are
connected. Figure 1 shows the time diagram for pipelining
where in each time slot, only one input selects an output
for a particular time slot in the future. If I i ! Tk is as-
signed to some time slot Tj, it means that input Ii reserves
an output for time slot Tk, and this reservation is made dur-
ing time slot Tj . Bold vertical lines enclose the calculation
of one schedule, which lasts N time slots in the given ex-
ample. Here N denotes the number of input and output
ports. In the more general case, in any time slot multiple
inputs might select outputs for some future time slot, or
it might take multiple time slots for an input to select an
output for a future time slot. Time is further divided into
frames comprising fixed number of time slots, F (as shown
in Figure 1). In the specified time slot of a frame, counters
of some input are set to the negotiated values. In the exam-
ple shown, input i sets its counters cij to negotiated values
aij, cij = aij; 1 � j � N , in time slots k �F �N + i� 1,
k � 1. Only queues with positive counters would compete
for service, and whenever a queue is served its counter is
decremented by 1.

After inputs schedule packets from queues with positive
counters, they might schedule packets from the remaining
queues in the same pipelined fashion, as was described
in [9]. In this way, the best effort traffic can be accom-
modated if there is some bandwidth left after the higher
priority traffic is served. Packets are stored into different
queues according to their destinations, so that the informa-
tion about any queue status (empty or non-empty) and its
heading packet is readily obtained. Such input buffer orga-
nization is often referred to as a buffer with virtual output
queueing (VOQ) [1].

The pipelined sequential greedy scheduling algorithm is
easy to implement, and it scales well with increasing num-
ber of ports and decreasing packet transmission time. An
advantage of the proposed protocol is that it requires com-

munication only among adjacent input modules, and, con-
sequently, the simple scheduler implementation as shown
in Figure 2. Also, by using pipelining the requirements on
the speed of electronics are relaxed. In addition, it implies
an extremely simple admission control protocol that pro-
vides agile bandwidth reservations. When bandwidth b ij is
requested by input-outputpair (i; j), then a ij = dbij �F=Be
time slots per frame, i.e. credits, should be assigned to it.
We have shown earlier ([9]) that the bandwidth can be al-
located to input-output pair (i; j) if the following condition
holds:

X

k

aik +
X

k

akj � F + 1: (1)

Consequently, the bandwidth can be allocated in a switch if
for all 1 � i � N the following conditions hold:

Ti =
X

k

aik �
F + 1

2
;

Ri =
X

k

aki �
F + 1

2
: (2)

Here Ti is the number of credits assigned to input i for
transmission, and Ri is the number of credits assigned to
output i for reception. Half of the time slots per frame can
be allocated to any input or output, meaning that 50% of the
port capacity can be reserved for any unicast traffic pattern.

Simple admission conditions (2) allow fast bandwidth
reservations in a switch with a large number of ports. Also,
neither the scheduling protocol nor the admission control
protocol depend on the frame length F . Since the frame
length determines the granularity of bandwidth reserva-
tionsG = B=F , the proposed protocols provide bandwidth
reservations with fine granularity.

III. PERFORMANCE ANALYSIS OF FLEXIBLE

MULTICASTING IN HIGH-CAPACITY SWITCHES

If the multicast packet could be scheduled for transmis-
sion to multiple destinations in the same time slot, the avail-
able bandwidth would depend on the multicast traffic pat-
tern. Consequently, the admission control protocol would
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Fig. 2. Central controller implementing sequential greedy scheduling pro-
tocol.

be intricate, because it must consider the multicast traffic
pattern. Also, some high-capacity switching fabrics do not
allow the transmission of a packet to multiple destinations
at the same time [4]. Alternatively, multicast packets might
be independently scheduled for different outputs in the mul-
ticast group according to the described greedy algorithm.
This algorithm is scalable, and implies the simple admis-
sion control protocol. However, if an input sends a multi-
cast packet serially to all designated outputs, its bandwidth
will be wasted in multiple transmissions of the same packet.
Let’s denote the number of time slots per frame assigned to
multicast session (i; s) sourced by input i by amis, the set of
outputs in this multicast group byM is, and the number of
outputs in setMis by jMisj . Note that for a unicast ses-
sion jMisj = 1. It follows from equation (2) that credits
can be assigned to some input-output pair (i; j) if:

X

s

amis jMisj+
X

k;s;j2Mks

amks � F + 1: (3)

In the worst case, input i sends packets to all N outputs,
jMisj = N , where N is the number of ports, and from (3),
the transmitting port is underutilized:

Ti =
X

s

amis �
F + 1

N
: (4)

One N th of the time slots in a frame can be allocated to
input i, meaning that only 1=N of the transmitting port ca-
pacity can be utilized. Generally, utilization of the port ca-
pacity becomes low when a significant amount of multicast
traffic that it transmits has a large fan-out. The performance
degradation is more severe in high-capacity switches with
a large number of ports, N .

Let us observe that once any port from the multicast
group receives a multicast packet, it may as well forward
it to P � 1 ports of that multicast group which have not
received the packet. Here, each port comprises one input
and one output. In this way, the transmission burden would
be balanced over all ports in the multicast group. We have

seen that for P = N , a multicast packet can be transmitted
to all outputs within one frame, but a large number of cred-
its might have to be allocated for this multicast session and
the input port would get clogged. On the other hand, if each
port forwards the packet to only one port, i.e. P = 1, then
each port uses a small additional capacity for forwarding,
but the multicast packet might experience a delay of up to
N frames. Namely, in the worst case, a packet would be
forwarded only once per frame. This delay would become
excessive in high-capacity switches with a large number of
ports N , and large frame lengths F . Apparently, there is
a trade-off between utilized capacity and packet delay, that
depends on the chosen parameter P .

We will analyze the switch capacity that can be guaran-
teed to the ports in terms of the parameter P . The band-
width demand and packet forwarding order determine the
credit allocation. It follows from equation (2) that credits
can be assigned to some input-output pair (i; j) if it holds
that:

Ti + Ei +Rj � F + 1; (5)

where

Ti =
X

k

aik;

Ei � P �Ri = P �
X

k

aki;

Rj =
X

k

akj: (6)

Here, Ti is the total number of time slots per frame reserved
for packets that are transmitted by input i, Ei is the number
of time slots per frame reserved for input i to forward its
multicast packets, and Ri is the number of time slots per
frame reserved for packets bound to output i. Conditions
(5,6) imply that credits can be assigned to input-output pair
(i; j) if:

Ti + (P �Ri) + Rj � F + 1: (7)

It further follows that the bandwidth allocation is possible
if for all ports i; 1 � i � N; it holds that:

Ti � Ft;

Ri � Fr;

Ft + (P + 1) � Fr = F + 1: (8)

The total switching capacity that can be reserved equals:

C = N min(Ft �E[jMj]; Fr);

where E[jMj] is the average packet fan-out. Parameters
Ft; Fr are chosen so that the switch capacity is maximized
for arbitrary traffic pattern:

C = max
Ft;Fr

min
E[jMj]

(Ft �E[jMj]; Fr) =
F + 1

2 + P
: (9)



And, the bandwidth allocation is possible if for all ports,
1 � i � N :

Ti �
F + 1

2 + P
;

Ri �
F + 1

2 + P
: (10)

So, the portion of the port capacity that can be reserved is
1=(2 + P ) in this case.

Next, we will calculate the packet delay in terms of the
parameter P . Let us assume that a multicast packet of ses-
sion (i; s) is forwarded to all outputs within S frames. In
the first frame, the port that receives the packet from an in-
put, forwards it to P ports. In the next frame, each of these
ports forwards the packet to P 2 other multicast ports. In
the last frame the packet is sent to at most P S�1 remaining
ports. It holds that:

jMisj > 1 + P + : : :+ P S�2 =
PS�1 � 1

P � 1
)

S < logP ((P � 1) � jMisj+ 1) + 1: (11)

For P = 2 and N = 1024, the maximum packet delay
equals S = 10 frames. There is an obvious trade-off be-
tween granularityG = B=F and packet delayD = S�F �T ,
where T is the packet transmission time [10]. If we fur-
ther assume B = 10Gbps, T = 50ns and F = 104,
the granularity of bandwidth reservations is G = 1Mbps,
and the packet delay is D = 5ms. Since packets would
pass through a small number of high-capacity switches, this
packet delay could be tolerated even by delay-sensitive ap-
plications (voice and video conferencing). Finer granularity
can be readily provided to applications which are less sen-
sitive to the delay, as we will elaborate later. For P = 2
the portion of the port capacity that can be reserved is 25%,
regardless of the traffic pattern. The popularity of differ-
ent content can vary arbitrarily in magnitude and over time.
In [6], an unfortunate multicast traffic pattern was found
for which the capacity utilized by greedy scheduling algo-
rithms drops below 40% for large switches. So, the ad-
mission controller based on scalable scheduling protocols
must consider multicast traffic patterns in order to utilize a
larger portion of the switch capacity for more fortunate traf-
fic patterns. However, our proposed protocol implies a very
simple admission control that only checks port loads in or-
der to allow new bandwidth reservations and still utilizes a
significant portion of the switching capacity. The proposed
admission control further simplifies provisioning, because
the network planners should only ensure that the aggregate
transmission and reception capacities of users attached to
some port do not exceed specified values, without having
to estimate exact traffic patterns.

IV. SCALABLE SCHEDULING PROTOCOL AND AGILE

ADMISSION CONTROL PROTOCOL IN THE CASE OF

MULTICAST TRAFFIC

For fixed forwarding order, each port has to store ports
to which multicast packets should be forwarded. It is not
immediately clear how to determine the forwarding tree for
a multicast session when P � 2. We propose the follow-
ing simple algorithm for adding and removing a port to the
tree. Each port of a tree should store the parent (previous)
port and children (next) ports. Each port should also store
its branch fan-outs, where the branch fan-out is the num-
ber of ports that could be reached through that branch. A
request for adding a port to the multicast group is sent to
the tree root. It, then, travels through the tree always taking
the branch with the smallest fan-out. The fan-out of ev-
ery branch that this request passes is increased by one, and
the new port is added as a leaf to the tree (the port without
children). Similarly, when a port wants to leave a tree it
sends a request to the tree root. This request now travels
through branches with the largest fan-outs until it gets to a
leaf, and the fan-outs of these branches are decremented by
one. The port to leave sends, along with the request, infor-
mation about its parent and children ports, as well as about
its branch fan-outs, so that the chosen leaf would store these
parameters. Then, this leaf port informs its parent to stop
forwarding packets to it, and the parent of the port leav-
ing to start forwarding packets to it. We believe that in this
way, minimal memory and processing per port are required
for tree calculation and updates.

In the previous section we showed that the credits can be
allocated to a new multicast session (i; n) if the following
jMinj+ 1 inequalities are fulfilled:

amin +
X

k

aik �
F + 1

2 + P
; (12)

amin +
X

k

akj �
F + 1

2 + P
; (13)

for j 2 Min. If bandwidth is requested for a new mul-
ticast session, admission conditions (12,13) are checked,
and bandwidth is reserved accordingly. In the more general
case, only a subset of multicast outputs have enough spare
capacity, and they are admitted. Assume that the bandwidth
is reserved for multicast session (i; n), and that the admit-
ted multicast group of outputs is Ma

in. The tree is con-
structed out of the admitted multicast group according to
the described algorithm. Assume that source i transmits
packets to port p(i), and port j forwards packets to ports
pk(j); 1 � k � P . If a new multicast session (i; n) is
admitted, credits are updated like:

aip(i)  aip(i) + amin; (14)

ajpk(j)  ajpk(j) + amin; (15)



for j; pk(j) 2 Ma
in; 1 � k � P . Similarly, when the mul-

ticast session is released, the following updates are made:

aip(i)  aip(i) � amin; (16)

ajp(j)  ajpk(j) � amin; (17)

for j; pk(j) 2 Ma
in; 1 � k � P . It is also a realistic

scenario that one or more ports request to join an already
existing multicast session. They will be admitted if (13) is
fulfilled and added to the tree as described. Credit alloca-
tion is done according to (15). Similarly, it may happen that
some ports want to leave the multicast session. They are re-
moved from the tree as described, and credit allocation is
updated according to (17).

The admission of a multicast session can also be
pipelined. In addition, the multicast session may be re-
leased in a pipelined fashion. Such pipelined admission
control might better utilize the available bandwidth. For
example, the bandwidth for a multicast session is reserved
in one frame according to (14,15), but packets are trans-
mitted only to the first port of the forwarding sequence in
the next frame. So, the bandwidth reserved for forward-
ing of these multicast packets to the rest of the ports is
wasted because they have not arrived into the appropri-
ate queues yet. But, since the input transmits packets to
the first port in the multicast group within one frame, then
the bandwidth for forwarding packets by this port should
be reserved in the same frame (which is one frame after
the bandwidth has been reserved for transmission from in-
put), and so on. Similarly, when a multicast session has
ended, the input will stop transmitting packets, but packets
that were previously transmitted might still be forwarded
by the switch ports. So, the bandwidth should be released
according to (16,17) jMinj frames after the termination of
the multicast session. Alternatively, the bandwidth reserved
for forwarding of multicast packets from the first port in a
forwarding sequence, should be released one frame after
the bandwidth reserved for transmission from the multicast
input has been released, and so on. The pipelined admis-
sion control can be summarized as follows. Input i reserves
the bandwidth for transmission to port j 2 P 1 = fp(i)g
by updating the assigned credits according to (14) in some
frame t if conditions (12) and (13) for j 2 P1 hold. Then,
port j 2 P1 reserves bandwidth for packet forwarding to
ports j 2 P2 = fp1(j); :::; pP (j)g for which conditions
(13) hold, by updating the assigned credits according to
(15) in frame t + 1. In general, ports j 2 Pl reserve the
bandwidth for packet forwarding to the associated ports
j 2 Pl+1 = fpk(j)jj 2 Pl; 1 � k � Pg for which
conditions (13) hold, by updating the assigned credits ac-
cording to (15) in frame t + l. Similarly, if this multicast
session ends in frame t, input i releases the bandwidth re-
served for port p(i) in frame t, and ports j 2 Pl release
bandwidth reserved for forwarding packets to their associ-
ated ports j 2 Pl+1 in frame t+ l.

At the beginning of each frame, counters associated with
input-output pairs are set to their negotiated numbers of
credits, cij = aij; 1 � i; j � N . Packets are scheduled
according to the previously described pipelined sequential
greedy algorithm in which queues with positive counters
are served with priority.

V. CONCLUSION

We proposed flexible bandwidth reservations for the mul-
ticast traffic in a high-capacity switch. In a network with a
large number of low capacity switches, bandwidth reserva-
tions are hindered by the required signalling and high com-
plexity admission control algorithms. Our protocol takes
advantage of today’s high capacity switching fabrics. Pro-
posed centralized scheduler can make fast decisions and
provide agile resource allocation. Multicast packets are
forwarded through the switch, so that their transmission is
balanced over the switch ports. The utilized switch capac-
ity somewhat drops due to this packet forwarding, but the
switch transports contents whose popularities change arbi-
trarily in magnitude and over time.
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