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Abstract—The sequential greedy scheduling (SGS) algorithm
is a scalable maximal matching algorithm. This algorithm was
conceptually proposed and well received since it provides non-
blocking in an Internet router with input buffers and a cross-bar,
unlike other existing implementations. In this paper, we implent
a new design of the SGS algorithm, and determine its exact
behaviour, performance and QoS that it provides. We examine
different design options and measure the performance of their
implementations in terms of their scalability and speed. It will
be shown that multiple scheduler modules of a terabit Internet
router can be implemented on a low-cost FPGA device, and that
the processing can be performed within the desired time slot
duration. Proper functioning of the implemented scheduler was
confirmed through thorough software and hardware testing.

I. INTRODUCTION

The fast growth of bandwidth demand on the Internet has
led to a need for high-capacity packet routers, with large
number of ports and high port speeds. Routers with input
buffers are the most scalable single-stage routers. In this
architecture, packets are split into cells of fixed length and
stored at the input ports. Based on the information about the
outstanding packets, the scheduler determines the cross-bar
configuration in each time slot, i.e. the input-output pairs that
should be connected. When the number of ports increases,
the allocation of outputs to inputs in these routers becomes
computationally intensive [1]-[4].

The router with input buffers is non-blocking if appropriate
scheduling algorithms are implemented. But, the algorithm
must not limit the router scalability either. It has been recog-
nized that maximal matching algorithms provide non-blocking
while requiring significantly lower computing complexity
compared to maximum matching algorithms [1],[5]-[8]. The
maximal matching between inputs and outputs do not leave
input-output pairs unmatched if there is traffic between them
[3L,[5],[9]. The Sequential Greedy Scheduling (SGS) algo-
rithm [1], [5] is a maximal matching algorithm that provides
non-blocking through a cross-bar with the speedup of two,
when the traffic is policed, and consequently provides delay
guarantees to the sensitive applications, as well as flexible
admission control.
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The SGS algorithm can be implemented using pipeline
technique, and involves a scheduler with a simple structure.
For a router with N ports, the scheduler has N modules
and each of the modules communicates only with adjacent
scheduler modules. The SGS algorithm is performed in N
steps. In each step, one of the inputs chooses the first output
for which it has packets to send, and which was not assigned
in previous steps. Then, this input updates the set of available
outputs and forwards it to the next input in the chain. Using
pipeline technique, the schedule is calculated during multiple
time slots. In each time slot, the scheduler calculates in parallel
schedules for N future time slots. Thus, each input port is
given significantly longer time to perform the output selection.

The scheduler should perform an output selection so that
the overall pipeline delay is a negligible part of the packet
delay. The packet delay (including queuing delay) depends on
the cell duration and the granularity of bandwidth reservations.
It is equal to the policing interval (frame) in unicast routers
with input buffers controlled by the SGS [1], [5]. Policing
interval equals F' - T, where F' is the number of cells per
policing interval, and T is the cell duration. We have shown
that the frame size should be F' >> N, so that not much
bandwith is wasted when many ports exchange small amounts
of traffic [10]. If T’y denotes the time required for the output
selection, then the pipeline delay is N7s. The pipeline delay
is negligible if NTy << FT,., which holds when T ~ T,
if we assume high worst-case efficiency, i.e. F' >> N. So,
when the pipeline technique is introduced, a processing time
of each input is relaxed N times (from 7./N to T.) without
sacrificing the performance.

Scalability of the scheduling algorithm may be estimated,
but it can be ascertained only when the algorithm is actually
implemented. Field programmable gate arrays (FPGAs) are
convenient for the implementation of the SGS algorithm. They
are cost-effective, and relatively easy to program. Testing of
the FPGA design is significantly simplified compared to the
application-specific integrated circuit (ASIC) design, which
speeds up the FPGA design and reduces its cost. Performance
of the implementation (its speed and scalability) depends on
software tools used for synthesis, and placement and routing
on the FPGA device [10]-[12]. Since in the pipelined SGS
algorithm, the cell duration, T, should be greater than the
output selection time, T, and the delay is proportional to the
cell duration, the output selection time should be as low as
possible in order to provide low packet delays.

Other implementations of the schedulers for the high-
capacity packet routers have been previously suggested [2]-
[3]. These implementations, however, are neither scalable since
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the complexity of the design increases with the square of the
number of ports, nor non-blocking for all types of traffic.

In this paper, we propose a new design of a scalable
non-blocking scheduler for the high-capacity packet routers.
Particular scheduler components are first described. Next, we
present the optimizations of the scheduler subcomponents, and
prove their correct functioning. Then, we propose two design
options for the SGS scheduler, and examine the performance
of their implementation in terms of the speed and scalability.
The number of scheduler modules that can fit one FPGA
device and the output selection time 7's are calculated for
various router sizes. The implemented design is thoroughly
tested using both software and hardware checks.

II. DESIGN OF THE SCHEDULER

The internal architecture of the input port is given in Fig.
1. The input port consists of several components: network
processor, data memory, linked list memory, queue manager,
and output selector. When a packet arrives to the router, its
destination IP address is read by network processor (NP)
and the router output to which the packet should be sent is
determined. The NP also divides packets into smaller fixed
length cells and stores them in the appropriate virtual output
queue (VOQ). In each input buffer, there are N VOQs that
comprise cells bound for particular outputs. Data memory
stores the incoming packets/cells until they are scheduled and
sent through the switching fabric. Linked list memory stores
the data memory addresses of cells in VOQs. Queue manager
performs operations on virtual queues. Output selector calcu-
lates the schedule for the outstanding cells and stores it in
output memory until the cells are read.

We have implemented scheduler modules comprising queue
manager, linked list memory and output selector on Altera
Cyclone II FPGA. These components will be presented in
more details in the following subsections. Multiple scheduler
modules can be placed on a single FPGA device.

A. Linked List Memory

Cells in data memory that are bound for the same destination
form a VOQ. There are N VOQs, corresponding to N outputs.
Linked list memory stores addresses of cells in different VOQs
and addresses of empty locations. Each location in one virtual
queue linked list (VQL) contains the address of the next
location in that VQL, or zero (NULL) if no more locations

belong to the VQL. Similarly, each location in the empty queue
linked list (EQL) contains the address of the next location in
EQL. The size of the linked list memory is defined by the
number of cells that ought to be stored in the data memory
of the router. The data memory should be able to store the
number of cells equal to the frame length F'. Thus, the linked
list memory has F' locations.

We designed the linked list memory so that it uses M4K
memory blocks of the Altera Cyclone II FPGA.

B. Queue Manager

Queue manager performs operations when a cell arrives
to the queue manager, when it is scheduled by the output
selector, or when it departs the router. The queue manager
stores pointers to VQLs. There are three pointers to each VQL:
to the beginning of the VQL, the first unscheduled packet
in the VQL, and the end of the VQL. Similarly, the EQL
is managed with two pointers: to the beginning and the end
of the EQL. The pointers are updated each time one of the
operations is performed. Multiple operations are carried out
in the same time slot, and in general on different VQLs.

At the beginning, all memory locations belong to EQL, and
each location contains the address of the next location in the
memory (except the last that points to NULL). The memory
location is removed from the beginning of the EQL to the
end of the VQL of some output, when a cell bound for that
output arrives to the router. The cell is stored to the address
from this memory location. When input sends a cell to some
output, the cell address in the data memory is read from the
heading location of the corresponding VQL, and this memory
location is added to the end of EQL. When a cell is scheduled,
the corresponding VQL is updated. If the pointer to the first
unscheduled cell from the same VQL points to the last cell
in that VQL, the pointer is set to NULL. Else, the pointer to
the first unscheduled cell is set to point to the next element in
that VQL.

The queue manager was designed in VHDL, and it can be
scaled easily for different router sizes.

C. Output Selector

The output selector of the associated input schedules a cell
by choosing the first available output from the set of outputs
for which the given input has cells to send. The result of the
scheduling process is a vector in which only one bit, which
corresponds to the scheduled queue, is set to logical one.

The structure of the optimized output selector is shown
in Fig. 2 [12]. Bits denoted by R contain information about
cells of a particular input, which participate in the contention
process. Bit R; is set to ’1’ only if there are unscheduled
cells for the j-th output port, and the j-th output port was not
selected by previous input ports. As a result of the scheduling
process, (0 is set to ’1” when the j-th output port is chosen by
the given input. The information about the remaining output
ports is forwarded to the next input port in the chain.

The output selector is implemented recursively. The two-
port output selector is shown in Fig. 2a. The output selector
for a router with 251 output ports can be built recursively
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by using two output selectors for 2% ports and one two-port
output selector, as shown in Fig. 2b.

Theorem 1: For the 2% x 2% output selector the following
equations hold:

C=32_Ru, (1)
Qi=E-R-[[IDIR;,1<i<2* )

that is, the output selector chooses the first available output for
which an associated input control module has cells to send.
Proof: The theorem 1 was proven in [12]. ]

The @ vector is forwarded to the optimized coder shown
in Figure 3, which determines the position of a logical one
in that vector and thus the output that has been scheduled for
the observed time slot. The coder allows the output selector
to propagate the information about the scheduled queue with
less bits. The output selector and the coder are connected in
the following manner: the j-th output of the output selector
drives the j-th input of the coder. When @; =’1°, then
A; =1, and the coder returns j coded binary. The coder
is also implemented recursively, as shown in Figure 3.

Theorem 2: For the 2¥-to-(k + 1) coder, when A, =1’
(1 < o < 2%), the outputs of the coder X; (0 < i < k)
comprise the binary representation of z:

r= Sk X 20 A3)

and when all the inputs are equal to zero, the coder’s output
is zero, as well.

Proof: We have proven the theorem 2 in [12]. ]

The number of the scheduled output is sent to the queue

manager, and also stored in the output memory until the time

the cell should be read, according to the pipeline technique.

The output selector for the input ¢ in time slot & calculates the
schedule and reserves the output for the time slot:

ty=k+N+3—i. @)

Therefore, the numbers of the scheduled VOQs need to be
stored in the output memory until the time slot when they
need to be read by the queue manager. The output memory
was designed to use M4K memory blocks functioning as an
embedded shift register. The additional delay of three time
slots needs to be introduced (since the minimum tap distance
of the embedded shift register is three). The delay incurred in
this way is still a negligible part of the total packet delay.

III. THE PERFORMANCE ANALYSIS

We have implemented two different design options of the
scheduler that runs the SGS algorithm. In this section, we
will discuss their performance and measure it in terms of the
design scalability, i.e. the number of scheduler modules that
can fit one FPGA device. We will also examine the speed
of the design, i.e. the minimum achievable output selection
time, Ts. The Altera Cyclone II EP2C35F672C6 device [13]
that we used for the implementation consists of 33216 logic
elements (LEs) grouped into logic array blocks (LABs), 100
M4K memory blocks containing 4608 memory bits each, and
475 user 10s on the periphery.

We have shown in [12] that the maximum number of
scheduler modules, which can fit a single FPGA device, does
not change if the optimized structures are used in place of
the simpler VHDL design. However, it was proven that the
minimum output selection time does significantly decrease
when the optimized structures are implemented. The gain of
the optimization was shown to increase with router size.

A. Case A

The state machine for the queue manager operation com-
prises four states: swait, write, schedule, and read, and the
state transitions are unconditional, i.e. in each clock cycle the
state machine switches to the next state. The swait state is
needed to ensure the correct functioning of the controller, since
the synchronous operations of the M4K memory require one
additional cycle between an address setup cycle, and a cycle in
which the data is read. The pointers to VQLs are implemented
using LEs of the Altera Cyclone II.

TABLE I
RESOURCE UTILIZATION AND TIMING CHARACTERISTICS, F' = 8 N

N Np LE MAK | pins | lim | fmax T
[Kbits] [MHz] [ns]
16 16 17331 32 339 / 121.1 33
32 17 32096 34 441 LE 84.1 47.4
64 8 29507 16 331 LE 82.6 48.4
128 3 24599 12 215 LE 68.4 58.4

To obtain a rate granularity for high efficiency, the frame
length should be at least ten times the number of ports, as
we pointed out before. Tables I and II contain the FPGA
resource utilization, timing characteristic and limiting factors
when the frame size is eight and sixteen times greater than the



TABLE 11
RESOURCE UTILIZATION AND TIMING CHARACTERISTICS, F' = 16 N

N Np LE MAK | pins | lim | fmax T.

[Kbits] [MHz] | [ns]
16 | 16 | 18895 32 371 7 1065 | 375
32 | 15 | 31300 30 427 | LE 97.2 45.1
64 8 | 31736 32 347 | LE 81.2 492
128 | 3 | 26658 21 221 LE 69.4 57.6

number of ports, respectively, for different number of input
ports NV, and for maximum number of scheduler modules N p
which could have been fit onto a single device. The minimum
output selection time equals the time required for the linked
list updates, since the time required for the output selector and
coder to schedule a cell of a given input is not critical. Thus,
the minimum output selection time can be calculated from the
maximum clock frequency as: Ts =4/ fyax.

The tables also show in the column ”lim” which factor limits
the number of scheduler modules that fit one FPGA device: the
number of LEs (LE), the number of memory blocks (mem),
or the pin number (pins). The number of used pins can be
calculated as:

pins(N, Np, F) = (2[log2F']+logaN+1)Np+2N +3, (5)

because loga N + 1 pins per module are used for incoming
cell’s VOQ numbers, 2[logs F'] pins per module for addresses
to which network processor stores and reads cells from, 2N
pins for control bits, and three pins for two clocks and a
reset signal. The number of scheduler modules is limited by
memory to 50, since there are 100 M4K blocks, and every
scheduler module uses at least two M4K blocks (one for linked
list memory and one for output memory). This number can
further decrease, when some memories span multiple M4K
blocks. The number of M4K blocks required for the linked
list memory and the output memory can be calculated as:

mem(N, Np, F) = ([F[logsF| /4096] + 1)Np,  (6)

since the linked list memory has the size of F'[log2F’| bits
per module and the output memory in none of the observed
cases reserves more than one M4K block per module. The
linked list memory reserves [F'[logoF']/4096] M4K blocks
per module, since the Quartus II software we used for Altera
FPGA devices limits the use of M4K block to 4096 bits. So,
the maximum number of control modules per chip should
satisfy the inequalities:

pins(N, Np, F') < 475,
mem(N, Np, F') < 100. @)

When some of the equalities in (7) is first met, the corre-
sponding chip resource is limiting the number of modules on
the FPGA chip. The number of LEs that are used for the
implementation cannot be calculated deterministically.

It can be observed from Table I and Table II that the
maximum clock frequency of the design somewhat decreases
with the increase of the number of ports because it causes
the increase of the number of required LEs. However, the
minimum output selection time does not change significantly
with the frame length F', as expected, and will remain well
below 100ns for the finest granularities as desired.

B. Case B

The state machine for the queue manager operations has
three states, and the state transitions are unconditional. Oper-
ations on VQLs are distributed over these three cycles (states)
so that the fourth state required in case A is avoided. To
increase the scalability of the queue manager, the pointers
have been implemented in the M4K blocks of the Cyclone
IT FPGA. Since some of the pointer updates require multiple
memory accesses and due to the synchronous operations of
M4K memory, pointer updates cannot be performed within
three states. So, we access the pointer memory at twice the
speed of the linked list memory, and a separate state machine
with six states and also unconditional transitions regulates the
pointer operations. The two state machines are synchronized.

To increase the number of modules that can fit one FPGA,
the pins’ signalling speed is increased two times. The data
memory addresses to be written to and read from, which are
exchanged between network processor and the implemented
scheduler, are similarly sped up. In this way, the number
of pins required to ensure the given throughput of control
information is decreased nearly two times. In this case, the
minimum output selection time can be calculated from the
maximum clock frequency as T's = 6/ faax, since the time
slot comprises six cycles of the clock that manages pointer
updates.

The number of modules that can fit the FPGA may be
limited by the number of pins, the number of M4K blocks
or the number of LEs. When the pins are sped up, the number
of used pins can be calculated as:

pins(N, Np, F) = (2[[log2F'|/2] +logaN +1)- Np+ N +4,

@®)
because the number of pins for addresses is halved to
2[[log2F/2] pins per module, for control bits to N pins,
and one additional pin for the clock is used.

The number of scheduler modules is limited by memory
to 20 since there are 100 M4K blocks, and every scheduler
module uses at least five M4K blocks (three memories for
pointers, one for linked list memory, and one for output
memory). This number further decreases when the linked list
memory spans multiple M4K blocks. The number of utilized
M4K blocks is described by equation:

mem(N, Np, F) = ([F[log2F]/4096] +4) - Np,  (9)

because in the cases observed neither pointer memories nor
output memories reserve more than one M4K block.

Again, the maximum number of control modules that can
fit one device should fulfill inequalities (7). When some of the
equalities in (7) is first met, the corresponding chip resource
(pins or memory blocks) is limiting the number of modules
on the FPGA chip.

The resource utilization, timing characteristics and limiting
factors for ' =8N and F' = 16N are given in tables III and
IV respectively. It can be observed from the tables that the
minimum time slot duration slowly increases with the router
size and with the frame length. For N = 16, the increase in the
speed of the pins was not necessary since the entire switching
controller fits the chip.



TABLE III
RESOURCE UTILIZATION AND TIMING CHARACTERISTICS, F' = 8N

N Np LE M4K | pins lim fvax T,
[Kbits] [MHz] | [ns]
16 16 4866 80 340 / 138.2 43.4
32 20 8833 100 316 mem 133.7 449
64 20 14202 100 408 mem 121.5 49.4
128 14 17626 98 384 mem 119.5 50.2
TABLE IV

RESOURCE UTILIZATION AND TIMING CHARACTERISTICS, F' = 16 N

N Np LE M4K | pins lim fmax T,
[Kbits] [MHz] [ns]
16 16 5122 80 372 / 130.1 46.1
32 20 9155 100 356 mem 129.9 46.2
64 14 10276 98 306 mem 121.2 49.5
128 10 12816 100 332 mem 116.9 51.3

The minimum time slot is slightly longer than in the case A
for smaller routers, i.e. N = 16. However, as the router size
increases, the minimum time slot duration becomes shorter
than in case A, and the number of scheduler modules that can
fit the FPGA in case B is significantly larger than in case A.
That is, for I/ = 16N, in case B ten modules fit one chip
for N = 128; while in case A three modules fit the chip for
N = 128. The minimum time slot is limited to Ts=51.3ns in
case B, which is still well below 100ns.

TABLE V
MAXIMUM NUMBER OF SCHEDULER MODULES Np PER CHIP

F =8N F =16N
N ps | nops | mem | ps | nops | mem
16 16 16 16 16 16 16
32 31 18 20 29 17 20
64 25 13 20 23 12 14
128 | 19 7 14 18 7 10

In Table V, we calculate the maximum number of scheduler
modules that would fit one FPGA device, using formulas (5),
(8), and (9). The cases with (ps) and without pins’ speedup
(nops) are considered. In case A, the number of LEs is main
scalability limitation. In case B, the scalability significantly
improves when the pins are sped up two times, and the number
of M4K blocks becomes a limitation shown in column “mem”.

IV. SIMULATION AND TESTING

Both design options were tested in software and in hard-
ware, in order to prove their correct functioning. First, the
built-in Quartus II simulation tool was used, and the designs
were tested for different sets of input stimuli. In order to
reliably perform the testing, a software was developed which
generates random stimuli, reads the Quartus II simulation
results and compares them with the expected values from the
algorithm emulation written in C. The designs were verified
for diffent router sizes, frame durations, and simulation lengths
[11].

Then, the hardware testing was performed. The designs
were downloaded into the Cyclone II chip on the Altera DE2
development board. On-board memory was used to store input
stimuli, and the testing was performed in real-time, under
minimum timing requirements, as given in Tables II-IV. The
output results were recorded by the Tektronix TLAS5203 logic

analyzer, and then, as before, compared with the expected
results from the algorithm emulation. In all the cases, the
correct functioning of the switching controller was confirmed.

V. CONCLUSION

In this paper, we proposed the design of the scheduler for the
non-blocking Internet router based on the SGS algorithm, and
presented its implementation. We optimized the scheduler sub-
components, so as to provide lower packet delays, and proved
their correct functioning. It was shown that placing pointers to
virtual queue linked lists into the FPGA memory and speeding
up the pins significantly improves the design scalability, and
the processing speeds in the larger routers. The preferred
design option is highly scalable: up to 14 scheduler modules of
an 128x 128 router can be placed on a single low-cost FPGA
device. The port bit rate is limited by the network processor
capability, and available network processors handle the port
speed of 10Gb/s. The scheduler modules designed on one low-
cost Altera FPGA may control router with hundreds of ports,
i.e. with terabit capacity, which confirms anticipated scalability
of the SGS algorithm. The output selection time remains below
60 ns in discussed high-capacity Internet routers. The proper
functioning of the scheduler was confirmed through thorough
software and hardware testing.

The implemented scheduler can be used in high-capacity
routers that provide delay guarantees for sensitive applications,
and the fine granularity of reservations.
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