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Abstract—The Internet traffic is growing, and its nature
changes because of new applications. Multimedia applications
require bandwidth reservations that were not needed initially
when the file transfers dominated the Internet. P2P applications
are making traffic patterns impossible to predict, and the traffic
loads generated at nodes need to be routed regardless of the
traffic pattern. When the guaranteed node traffic loads are
known, bandwidth reservations can be made simple as will
be explained in the paper. The shortest path routing (SPR)
protocols used on the Internet today do not maximize the
guaranteed node traffic loads, and do not provide scalable and
fast bandwidth reservations. Load balancing can improve the
network throughput for arbitrary traffic pattern. In this paper
we analyze and implement a routing protocol that is based
on load balancing and a commonly used shortest path routing
protocol, and is, consequently, termed as LB-SPR. LB-SPR is
optimized for an arbitrary traffic pattern, i.e. it does not assume a
particular traffic matrix. Optimization assumes only the weights
assigned to the network nodes according to their estimated
demands. It will be shown that the optimized routing achieves the
throughputs which are significantly higher than those provided
by the currently used SPR protocols, such as OSPF or RIP.
Importantly, LB-SPR calculates the guaranteed traffic loads
and so allows fast autonomic bandwidth reservations which are
the key for the successful support of triple-play applications,
including video and audio applications that require high QoS.
An actual modification of the TCP/IP stack that includes LB-
SPR is also described. Using the signaling mechanisms of the
OSPF protocol, the information needed to perform the routing
optimization is automatically distributed among the network
nodes whenever the network topology changes. The LB-SPR
implementation is validated on a sample network using a popular
virtualization tool - Xen.

Index Terms—Routing, optimization, linear programming,
load balancing, implementation

I. INTRODUCTION

THE INTERNET traffic has experienced some major
changes lately, which require modifications in the net-

work planning and routing protocols. Heavy traffic loads are
generated by the multimedia applications, and the actual traffic
distribution in the network becomes very hard to predict, due
to the developing peer-to-peer services. On the other hand, the
traditional approach to traffic grooming and routing optimiza-
tion in the optical networks assumes that the traffic demands
between pairs of nodes are known, which is often not the case.
New routing protocols should be able to optimally utilize the
network without knowing the actual traffic distribution.
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It is widely accepted that the next-generation networks
should become more autonomic in the process of the network
configuration, topology change detection and adaptation to the
traffic load changes. Some of these features are incorporated
into today’s IP networks: they have the ability to detect the
topology changes and change the routing accordingly, the
TCP congestion control mechanism adapts the transmission
speed to the traffic load changes, etc. However, the autonomic
handling of multimedia applications is not resolved yet. These
applications require high quality of service: bandwidth reser-
vations and delay guarantees. Centralized bandwidth reser-
vations can obviously become a bottleneck in large-scale
networks, as well as the reservations which require each router
to know about the available link capacities in the whole
network. So, a new mechanism for fast bandwidth reservations
is needed.

Because of the traffic unpredictability, the customers at-
tached to the network nodes should be served regardless of the
traffic pattern between them. In other words, the guaranteed
node traffic loads should be sufficient to support all the users
attached to these nodes. When the guaranteed node traffic
loads are determined, the bandwidth reservations through the
network become simple. Each session learns from its router
(node) if it can be passed through the network, since the router
knows its guaranteed traffic load and the already reserved
capacity. If the session can be passed, its request for the
bandwidth reservation is passed to the destination router,
which checks if there is sufficient capacity on its links toward
customers since it knows its guaranteed traffic load and the
already reserved capacity. In this way, bandwidth reservations
are distributed and are consequently agile. For each session,
only two edge routers check their available capacities. And,
each router handles bandwidth reservation only for the flows
that are either entering or leaving the network through that
router. Fast automated bandwidth reservations are very impor-
tant for growing multimedia applications that demand high
QoS, i.e. bandwidth and delay guarantees. If all the flows
of equal priority negotiate certain policing interval, the delay
guarantees can be achieved when the bandwidth is reserved.

It has been shown that the guaranteed node traffic loads can
be significantly increased in the regular networks when load
balancing is used [1]–[3]. Then, Kodialam et al. proposed to
use two-phase routing in an arbitrary network, and showed
significant improvements of the network throughput [4], [5].
However, this two-phase routing protocol is rather complex
since it optimizes the balancing coefficents using the linear
program with O(MN2) variables and constraints. For this
reason, we are proposing a novel two-phase routing, LB-SPR,
where each phase uses the standard shortest path routing (SPR)
protocol. In this way, we significantly decrease the complexity
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of the optimization problem to only O(N) variables and
O(M) constraints, and make it practical. Also, LB-SPR can be
implemented as a modification of the existing SPR protocols
such as OSPF and RIP. Balancing mechanism itself does not
increase computational complexity, it can be implemented by
the loose source routing and a slight modification of the IP
lookup algorithm.

In LB-SPR, every packet is routed in two phases, with SPR
as the underlying routing protocol in both of the phases. When
a packet arrives to the source router, its intermediate router is
determined. The packet is sent to the intermediate router using
the standard SPR protocol, and from the intermediate router to
the destination router again using the standard SPR protocol.
The load is balanced across the intermediate routers, meaning
that the specified portions of each flow are transmitted through
the intermediate routers. These portions are referred to as
the balancing coefficients. A balancing coefficient depends
only on the associated balancing router. Balancing coefficients
are optimized to maximize the network throughput while
ensuring that nodes can generate and receive loads which are
proportional to the allocated weights. The node weights are
chosen to reflect the expected demands at the nodes, as in [6].
For example, London is bound to generate more traffic than
Luxembourg considering its size, and should be allocated the
larger portion of the network capacity. This is achieved by
allocating to London the higher weight than to Luxembourg.

We implemented the LB-SPR protocol using the program-
ming language C++, and integrated the implemented protocol
into the TCP/IP stack [7]. The LB-SPR protocol uses the
signaling of the OSPF protocol. Through this signaling, each
router in the network is learning the network topology, and the
capacity of the nodes’ external (customer) links. The external
link capacities are taken to be the node weights. Consequently,
LB-SPR maintains autonomic fault recovery mechanism de-
veloped within OSPF. Namely, whenever there is a network
topology change, the routing is adjusted accordingly. LB-
SPR is advantageous during the transient periods after failures
because only the portions of the flows are affected, which can
be tolerated by most Internet applications. When the network
topology is learned, the linear program is run, and the optimal
balancing coefficients are determined at each router. Now, the
packets are easily routed based on the calculated balancing
coefficients, and using the SPR protocol.

The paper is organized as follows. The second section
represents the study of the related work. In the third section,
the LB-SPR protocol is described. In this section, the linear
program for the optimization of the balancing coefficients is
also presented and simplified. Using this linear program, we
analyze the performance of the LB-SPR protocol, i.e. the
node traffic loads that it guarantees and its speed. In the
fourth section, the performance of the standard SPR protocol is
analyzed. In the fifth section, the performance of the LB-SPR
and the SPR protocols (e.g. OSPF or RIP) are compared. In
the sixth section, the implementation of the LB-SPR protocol
is described. In the seventh section, the correct functioning of
the LB-SPR protocol is confirmed through its simulation in
the network of the virtual routers on several interconnected
computers. The eighth section concludes the paper.

II. RELATED WORK

Current routing protocols are typically oblivious, i.e. the
paths for the traffic between source/destination node pairs are
determined in advance. In this paper we will also consider
oblivious routing protocols, because making the routing adap-
tive to frequent traffic load changes can have some serious
side-effects: it can affect the quality of service and even
the network connectivity [8]. In the currently used routing
protocols, the routing decisions are made only based on the
final packet destination. For certain traffic patterns, the current
routing protocols can overload some links, while leaving the
other links unused at the same time. This might limit the
guaranteed node traffic loads, i.e. the traffic loads generated
and received at the nodes that can be routed for arbitrary
traffic distribution between pairs of nodes. Consequently, the
currently used protocols might limit the number of users that
can be serviced by the network more than necessary. To
optimize the network performance it is, therefore, necessary to
choose the routing protocol in such a way that the guaranteed
node traffic loads are maximized. These guaranteed node
traffic loads should not depend on the traffic pattern.

The optimization of the oblivious routing was addressed
by many authors [9]–[14]. Unfortunately, all of these so-
lutions rely on the previous knowledge or the prediction
of the traffic matrix (the elements of the traffic matrix are
the traffic loads between pairs of nodes in the network). In
general, traffic engineering practices assume the knowledge
of the traffic pattern, which is not a realistic assumption.
As already mentioned, the increasing peer-to-peer traffic and
increasing number of servers make it hard to predict the
actual traffic distribution. It is much easier to estimate the
total incoming/outgoing traffic loads for the network nodes.
In [4], [5], Kodialam et al. introduced the two phase routing
scheme that uses load balancing. The load balancing allows
to express the problem of finding the optimal routing only in
terms of the node traffic loads. Although the model developed
by Kodialam et al. optimizes balancing coefficients for the
general routing protocol, its practicality is critical. Namely, the
linear program for the routing optimization is very complex
and the optimization lasts very long - in the experiment that
we ran it took more than five days even for the smallest
of the analyzed real networks. However, the load balancing
is a promising technique because it spreads the traffic over
the links evenly for all traffic patterns. Load balancing was
shown to significantly improve the guaranteed node traffic
loads in the networks with regular topologies [1]–[3]. This
is a good motivation to explore the performance of practical
load balancing schemes.

III. LOAD BALANCED SHORTEST PATH ROUTING

(LB-SPR)

In the proposed routing scheme, the traffic between a node
pair (i, j) is routed in two phases. First, portions of the flow
from i to j are routed to the intermediate nodes m ∈ V (V is
the set of network nodes). In the next phase, every intermediate
node forwards the traffic to its final destination j. The traffic
from i to m, and from m to j is routed along the shortest
paths. The portion of the flow that is balanced across node
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m equals km, and does not depend on i and j. Of course,∑
m∈V km = 1. Fig. 1 illustrates the case of routing the traffic

between the nodes 1 and 5. The first phase of the flow routing
is represented by the dashed arrows, and the second phase of
the flow routing by the solid ones.

Assume that the network is represented by a directed graph
G = (V, E), where V is the set of nodes (vertices) and E is
the set of links (edges). The number of nodes in the network
will be denoted by N and the number of links by M . Let i
be a source node. The outgoing traffic generated by i equals
si =

∑
j∈V dij , where dij is the intensity of a flow from i to

j. Similarly, for j being the destination node and rj its total
incoming traffic, rj =

∑
i∈V dij . We have already defined the

traffic matrix as TM = [dij ]N×N . We will refer to the vectors
S = [s1, s2, . . . , sN ] and R = [r1, r2, . . . , rN ] as out-traffic
vector and in-traffic vector. Here, the outgoing traffic is the
traffic that is coming from the customers and going to the
network, and incoming traffic is the traffic that comes from
the network and is going to the customers.

As mentioned before, when the described load balancing is
applied, the link loads depend only on the node traffic loads.
Namely, the traffic between any two nodes i and m consists of
two components: the traffic b1

im, generated by i and balanced
through m, and the traffic b2

im, directed to m and passing
through i as the intermediate node. It is easy to see that it
holds:

b1
im =

∑
j∈V

kmdij = kmsi (1)

b2
im =

∑
p∈V

kidpm = kirm. (2)

The load of link l ∈ E can be expressed as

Ll =
∑

(i,m)
F l

im(kmsi + kirm), (3)

where F l
im = 1 if the link l belongs to the shortest path be-

tween the nodes i and m, and F l
im = 0 otherwise. Obviously,

the link load does not depend on the traffic pattern between
nodes, but only on the node traffic loads, i.e. traffic loads
generated and received by the customers of these nodes.

The problem of the node traffic maximization and the prob-
lem of the congestion minimization are equivalent. Congestion
Q represents the maximum link utilization in the network,
where the link utilization is the ratio of the link load Ll and
the link capacity, Cl. It is related to the guaranteed traffic load,
since all the initial flows in the network can be increased up
to 1/Q times, without causing the link overload.

The general-case formulation of the linear program that
minimizes congestion has the form:

min Q

(C1)
∑N

i=1 ki = 1

(C2) ∀l ∈ E :
∑

(i,m)
F l

im (kirm+kmsi)

Cl ≤ Q

(C3) ∀n∈ V :
∑

l∈IN(n)

Ll− ∑
l∈OUT(n)

Ll =rn−sn.

(4)

Sets IN(n) and OUT(n) represent the set of incoming and
outgoing links of a node n, respectively. This problem has N+
1 variables - k1, k2, . . . , kN and Q. The number of constraints
is M + N + 2 (not counting non-negativity constraints).

2

4

5

3

1

1 15k d
2 15k d

4 15k d

5 15k d
3 15k d

1 15k d 2 15k d

4 15k d

3 15k d
5 15k d

Fig. 1: Routing scheme illustration.

We will prove that if for every node the incoming equals
the outgoing traffic, the flow conservation constraints (C3) are
superfluous.
Lemma 1: If rn = sn the constraint (C3) is redundant.
Proof: When rn = sn, after substituting Ll from Eq. 3,

constraint (C3) becomes
∑

(i,m)
l∈IN(n)

F l
im(kism+kmsi)=

∑

(i,m)
l∈OUT(n)

F l
im(kism+kmsi).

(5)
For i �= n, m �= n , node n can either be on the shortest path

between i and m or not. If it is not on this path, then there is
no link l ∈ IN(n) or l ∈ OUT(n) such that F l

im = 1, and the
term kism + kmsi does not appear in the equation. If n is on
the shortest path, then there is exactly one link entering and
one leaving this node with F l

im = 1, so the term kism +kmsi

appears on both sides of the equation, and can be eliminated.
This leaves only the terms associated with i = n or m = n.

Let us now consider the case when i = n, i.e. n is the
source node. For any m, there can be no link l ∈ IN(n) such
that F l

im = F l
nm = 1 (otherwise the path from n to m would

contain a loop, and would not be the shortest path). Similarly,
if m = n, i.e. n is the destination node, there can be no link
l ∈ OUT(n), such that F l

im = F l
in = 1.

Thus, we can rewrite the Eq. 5 in form:
∑

i
l∈IN(n)

F l
in(kisn+knsi)=

∑

m
l∈OUT(n)

F l
nm(knsm+kmsn).

(6)
If the network is connected, there is a path between every

pair of nodes. For any i there is exactly one link l ∈ IN(n)
such that F l

in = 1, so for every i the term kisn + knsi

appears exactly once on the left hand side of the Eq. 6.
Similarly, for any m there is exactly one link l ∈ OUT(n),
such that F l

nm = 1. For every m, the term knsm + kmsn

appears exactly once on the right hand side. Equation 6
always holds, because it holds

∑
i∈V knsi =

∑
m∈V knsm and∑

i∈V kisn =
∑

m∈V kmsn = sn. Thus, the initial constraint
is always fulfilled and is therefore not necessary to add it to
the model.

According to the previous lemma, we can use the following
linear program to minimize the congestion:

min Q

(C1)
∑N

i=1 ki = 1

(C2) ∀l ∈ E :
∑

(i,m)
F l

im (kism+kmsi)

Cl ≤ Q

(7)
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Fig. 2: The assigned graph.

Model (7) now has N +1 variables and M +2 constraints.
Guaranteed traffic loads that node i can generate and receive

are si/Q and ri/Q, respectively. By setting the in-traffic and
out-traffic vector elements that are fed into the LP program
to be proportional to the desired node weights, the ratio
between the guaranteed node loads can be controlled. We
will assume that the node weights are proportional to the
total link capacities entering and leaving the node. Namely,
the capacity of the links for the customers at each node
corresponds to the bandwidth demand at each node. Note that
this demand is fairly simple to predict. Since the customers
at different nodes should be equally served, the incoming and
outgoing guaranteed node traffic loads should be proportional
to the link capacities allocated to the customers according
to their estimated demands. Let the total link capacity for
the traffic entering the node i be Cin

i , and the total link
capacity for the traffic leaving the node be Cout

i . So, we
choose si ∝ Cin

i , ri ∝ Cout
i , i ∈ V . For the considered

realistic backbone network topologies, the condition ri = si

is fulfilled for every i. That is,

ri = si ∝ Ci = Cin
i = Cout

i , i ∈ V. (8)

The guaranteed traffic load for the node i in the network is
proportional to the value of the out-traffic vector element si,
and equals si/Q. The minimum value of the guaranteed node
traffic load in the whole network equals:

slbr
gtd = min

i∈V
si/Q. (9)

IV. SHORTEST PATH ROUTING

We determine the guaranteed node traffic for the shortest
path routing (SPR), in order to compare it with the guar-
anteed node traffic for the proposed load balanced shortest
path routing (LB-SPR). In the case of SPR, the link loads
depend not only on the node traffic loads, but also depend on
the traffic-matrix elements. Therefore, the worst case traffic-
patterns should be found for all links, and they will determine
the node traffic loads that can be guaranteed.

Let us denote the set of all node pairs that communicate
across the link l ∈ E as P l =

{
(i, j)|F l

ij = 1
}

. Define
the set of sources sending their traffic across l by I l ={
i|∃j, (i, j) ∈ P l

}
, and the set of destinations receiving the

traffic across l by J l =
{
j|∃i, (i, j) ∈ P l

}
. Let us calculate

the worst-case traffic load of link l, and then the traffic load
that can be guaranteed when SPR is used in a given network.
For this purpose, we form a bipartite graph with I l and J l

TABLE I: Results for the six Rocketfuel network topologies
Model Size

NETWORK N M var con G t[sec]
AS 3967 (Exodus) 79 294 80 282 6.02 2.77
AS 1755 (Ebone) 87 322 88 316 2.02 3.38
AS 1221 (Telstra) 104 302 105 304 2.24 3.53

AS 6461 (Abovenet) 138 744 139 720 4.93 9.36
AS 3257 (Tiscali) 161 656 162 629 5.95 15.92

AS 1239 (Sprintlink) 315 1944 316 1923 7.69 60.36

as the sets of nodes - Fig. 2. Let there be a directed edge of
infinite capacity in the bipartite graph between every pair of
nodes (i, j) ∈ P l (note the difference between these edges
and the links in the network, they are not related). Let us
now add the additional source and sink nodes to this graph.
Let the source node be denoted by x and the sink node by
y. Let there be a directed edge from x to every i ∈ I l, with
the capacity si. Also, let there be a directed edge from every
j ∈ J l to y, with the capacity rj = sj . Now we determine the
value of the maximum flow from x to y in this graph, f l

max,
i.e. the maximum traffic load that the node x can generate
and pass to y through the given network [19]. The worst-case
link utilization is U l = f l

max/Cl. For a node i, this implies
the node traffic limit on link l to be si/U l. Therefore, the
minimum guaranteed node traffic in the whole network equals

sspr
gtd = min

i∈V,l∈E
si/U l. (10)

V. PERFORMANCE COMPARISON

We compared the performance of LB-SPR with the per-
formance of SPR on the six backbone network topologies
published in the Rocketfuel project [15], for the node weight
model in (8). We calculated the gain of the guaranteed node
traffic loads when balancing is used:

G = slbr
gtd/sspr

gtd , (11)

where slbr
gtd and sspr

gtd are defined in (9) and (10). From (7), it
follows that load balancing coefficients do not depend on the
traffic matrices, they only depend on the link capacities and
the estimated node traffic loads. So, if the node traffic loads
scale proportionally, load balancing coefficients and gain G
do not change.

Since the original data did not include the link capacities,
but only the link weights, we assumed that the capacity
of the link is inversely proportional to the link weight. We
used the linear program (7) to find the balancing coefficients
that maximize guaranteed node traffic loads for the LB-SPR
protocol. Then, we calculated the guaranteed node traffic loads
in the case of SPR, as described in Section IV, and calculated
the gain (11).

The gains and the times needed to optimize the balancing
coefficients are given in Table I. Processing time is up to
around 1 min which is acceptable in the IP network. Namely,
the balancing coefficients are recalculated only when the
network topology changes, and the achieved processing times
are sufficiently quick to adapt routing to the new network
topology in order to utilize it most efficiently. The processing
time of the protocol in [5] was more than five days even for
Exodus which is the smallest of the analyzed networks. So,
long processing time would not be acceptable. The gain of
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Fig. 3: The scheme of the LB-SPR implementation

the LB-SPR protocol compared to the commonly used SPR
protocol (e.g. OSPF or RIP) depends on the network topology
- for the more meshed topologies, the gain values are higher.
This was implied by the results of the analysis which was
performed for the regular network topologies [3]. Gains for
the analyzed realistic topologies are ranging from 2.24 to 7.69,
which is quite obviously a significant improvement.

VI. IMPLEMENTATION

In this section, we present the implementation of the pre-
viously analyzed LB-SPR routing protocol. In order to make
LB-SPR as compatible as possible to OSPF, it is implemented
in each OSPF area separately. When a packet enters the
OSPF area, its intermediate router is determined. The proposed
routing scheme uses OSPF to route the packets between the
source router and the intermediate router, as well as between
the intermediate router and the destination router. Here, the
source router is the first router that the packet encounters
when it enters the OSPF area, and the destination router is
the last router that the packet passes in the OSPF area under
consideration.

In a common IP router that uses the OSPF protocol, when
a packet arrives to the router, it is first processed by the
packet processor. The packet processor uses its lookup table
to determine the router output port to which the packet should
be forwarded based on its destination IP address. The lookup
table is updated whenever the network topology changes,
which provides an autonomic reliability. A software module
calculates new lookup table based on the LSA (Link State
Advertisement) control packets exchanged through the OSPF
protocol, and sends it to the packet processor. The LB-SPR
implementation has a similar structure, but it requires the
extension of the OSPF module, and some new modules as
well. The balancing coefficients are recalculated whenever
the network topology changes, which provides the same
autonomic reliability as does the OSPF.

The LB-SPR implementation is illustrated in Fig. 3. The
solution is based on the OSPF implementation by Moy [17],
[18], which is extended to support load balancing. First, it
was necessary to allow the retrieval and distribution of the
specific information needed by the linear program for the
routing optimization, such as the node weights Ci. Also, the

Optimization           

LP_Solve

LSA 

opaque LSA 

Node 
Weights

LP 
Preparation

Dijkstra

IP network addresses
Load

Balancer
OSPF

node coefficients

Fig. 4: The scheme of the optimization module

new C++ modules were developed to perform the routing
optimization and obtain the needed parameters: guaranteed
node traffic loads and balancing coefficients ki. Finally, the
load balancer was implemented to route the packets entering
the OSPF area according to LB-SPR. Load balancer first
has to determine the intermediate router for each incoming
packet, and then to direct the packet accordingly. Specified
portions of all the flows entering source routers have to be
directed to the intermediate routers, according to the calculated
optimal values of the coefficients ki. There are several possible
mechanisms to achieve this functionality. We chose the loose
source routing as the simplest IP-based solution. Namely, the
destination IP address of a packet entering the OSPF area
is replaced with the IP address of the intermediate router,
while the destination address becomes part of the loose source
routing option field.

Let us summarize how the packets are processed in the
router shown in Fig. 3. The path for the ”new” packet entering
the OSPF area is represented with the full line in Fig. 3. The
packet which is entering the OSPF area has to be processed by
the load balancer, which determines the intermediate router for
the packet, and modifies the IP header accordingly. Once the
packet has been modified by the load balancer, it is forwarded
through the network using the standard OSPF routing tables.
On the other hand, the path of the ”old” packet that has already
been modified by its source router is represented by the dashed
line. This packet is only passing through the given router,
and does not need to be processed by the load balancer. The
information needed to route this packet can be obtained from
the standard OSPF routing table. In the next subsections, we
will describe implemented software modules in more details.

A. Extended OSPF Module

In the case of the regular OSPF, the changes of the network
topology trigger the recalculation of the OSPF routes. For LB-
SPR, every time the topology changes it is also necessary to
repeat the routing optimization and recalculate the balancing
coefficients ki, based on the updated OSPF routing tables.

The node weights Ci are needed to run the optimization
(8). These weights can be set by the administrator, or can
be, more desirably, autonomic. Therefore, we use the SNMP
protocol to detect the operational state of the router interfaces
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Fig. 5: The analyzed network.

in the network, as well as their speeds. The use of the SNMP
to detect the changes of the interface operational states (up
or down), and their capacities allow together with the OSPF
mechanism full automation of the topology change discovery
and distribution.

Using SNMP, each router learns the operational state of
its interfaces and their speeds, and distributes this control
information inside the OSPF area. The opaque LSAs with the
area-local scope are used to convey this information according
to the OSPF standard described by RFC 2370 [23]. Opaque
LSAs were introduced to provide a generalized mechanism
to allow for the future extensibility of OSPF. Opaque LSA
consists of the standard LSA header followed by the 32-bit
application-specific information field. In our implementation,
the opaque type value is selected from the range reserved
for experimental and private use. The routers’ weights, i.e.
external link capacities, are transferred as the 64-bit integer
values. Incoming and outgoing opaque LSAs are processed
and stored into the LSA database. Whenever the external link
capacity changes, the router learns about the change through
the SNMP protocol, and distributes the updates by the opaque
LSAs.

Standard LSAs carry the information about the network
topology. Using this information, the OSPF module calculates
the IP routing table and sends this table to the packet processor
of the router. Whenever the network topology changes, the
OSPF module recalculates the IP routing table and sends its
updates to the packet processor. In the LB-SPR implemen-
tation, the selected information about the network topology
and the capacity of the routers’ external (customer) links is
transmitted to the optimization module. The OSPF obtains
this information from standard LSAs and opaque LSAs. Using
this information, the optimization module determines the
parameters required to perform load balancing.

B. Optimization Module

The optimization module gets the required information
from the OSPF module which performs the signaling, as
we have described in the previous subsection. Based on this
information, it optimizes the routing based on load balancing,
and sends the required parameters to the load balancer which
performs the actual routing of incoming packets.

The optimization module is shown in Fig. 4. Based on
the network topology information obtained from the OSPF
module, the Dijkstra module calculates forwarding trees for
all nodes in the network according to the Dijkstra algorithm.
The Dijkstra module also calculates the IP network address
of each intermediate router through which the traffic will
be balanced. This IP address will replace the destination IP
address when the source routing is used in the load balancer.
Using the calculated trees, the next module in line, the LP
preparation module calculates coefficients F l

ij , i, j ∈ V which
are required for the linear program defined by (7). Finally,
the LP Solve module optimizes the routing and calculates the
balancing coefficients ki, i ∈ V , which are necessary to the
load balancer.

C. Load Balancer

The load balancer receives the balancing coefficients from
the optimization module. It also receives the information about
the IP network addresses of the intermediate routers. These
addresses are calculated by the Dijkstra module, which is the
part of the optimization module. The load balancer gets the
information that it requires through a TCP connection. Based
on this information, the load balancer determines the router
output port for each packet entering the router and the OSPF
area, and modifies its header in order to balance the traffic
appropriately.
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Fig. 6: The simulation environment.

For each destination router j, the load balancer of the given
source router i stores the information about the currently used
intermediate router mj . We will call router mj the active inter-
mediate router. It also maintains a counter with the number of
bytes Bj that remain to be balanced across that intermediate
router. The initial value of the counter is proportional to the
balancing coefficient kmj of the intermediate router mj .

When a packet enters the OSPF area, it has to be processed
by the load balancer. First, the destination router for the
packet is determined, based on the IP address of the packet
destination. Let us say that it is a destination router j. Then,
the corresponding IP network address of mj is found, as well
as the counter Bj by the search through a Patricia tree. The
Patricia tree allows for a fast lookup. Then, the packet header
is modified: the destination address is replaced by the IP
network address of the intermediate router mj , and the original
destination address is placed in the option field for the loose
source routing as defined by RFC 791 [24]. The counter Bj is
then decremented by the length of the packet (in bytes). When
the counter Bj is smaller than the packet length, the active
intermediate router is updated. The next router from the list
of possible intermediate routers, mj = next(mj), becomes
active, and the counter Bj is set to the value proportional to
the balancing coefficient corresponding to that intermediate
router, kmj .

The load balancer was developed as a separate program
which is executed in the Linux user space. This module uses
netfilter/iptables for the acquisition of packets that are entering
the OSPF area. The load balancer could be executed by the
separate core when a multicore processor is used, if LB-SPR
needs to be improved. The speed of the load balancer can
be also improved if it is implemented in the Linux kernel,
by eliminating unnecessary task switching. Finally, the load

ifconfig eth1 100.7.3.2
ifconfig eth1 netmask 255.255.255.0
ethtool -K eth1 tx off
ifconfig eth2 100.7.2.2
ifconfig eth2 netmask 255.255.255.0
ethtool -K eth2 tx off
ifconfig eth3 200.0.22.1
ifconfig eth3 netmask 255.255.255.0
ethtool -K eth3 tx off
mount 192.168.122.1:/root/router /root/tmp
for f in /proc/sys/net/ipv4/conf/*/accept source route
do echo 1 > $f

done

Fig. 7: Configuration file of the router in Amsterdam

balancer can be implemented in hardware of the high-speed
ports.

VII. TESTING

A. Testing Environment

The network simulation using virtual machines as the
network nodes is gaining more popularity with the increase
of the computer processing power. The advantage of this
simulation method is that the protocol under consideration is
executed as it would be executed in the exploitation conditions.
This way, the more accurate simulations are performed, and
possible errors when adapting the protocol implementation to
the simulation tools are avoided.

We selected Xen as the virtualization platform because
of its maturity and performance [22]. Xen allows several
operating systems to be executed on the same computer
hardware concurrently. Administrator starts these operating
systems through the main operating system, named dom0,
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Fig. 8: The link usage.

which boots automatically. Existing configuration tools enable
effortless configuration of the virtual machines and their
simulation. These virtual machines, called domU, will be
connected through the bridges created in the dom0 kernel.
The network interfaces will be created manually by using the
configuration shell scripts. The virtual machines implement
the entire TCP/IP stack in which the OSPF protocol will be
replaced by the LB-SPR protocol shown in Fig. 3. The virtual
machines will play the role of both routers and hosts in the
network. The data will be exchanged in the network, and
we will test the LB-SPR functioning using the Multi Router
Traffic Grapher (MRTG) packet analyzer [25].

B. Functional verification of the LB-SPR Implementation

The performance of LB-SPR was analyzed in the network
represented in Fig. 5. This is, in fact, the simplified version
of the Exodus network topology, published by the Rocketfuel
[15]. For the purpose of this simulation, all the nodes in one
city were represented by a single node, and the equivalent link
weights were calculated. This network was emulated using
seven computers and one Ethernet switch as represented in
Fig. 6. Depending on the processor speed and RAM size, the
number of the virtual routers executed on a single computer
ranges from two to five. The virtual routers X and Y on
a single computer are connected through the Xen bridge
xenbrXY. The links between the virtual routers on different
computers were established using VLANs. The VLAN tags
corresponding to the links between routers executed on differ-
ent computers are represented by the numbers in Fig. 6.

Each virtual router is configured using the configuration
script. A representative configuration file of the router in
Amsterdam is shown in Fig. 7. In this configuration file, the
IP addresses and the corresponding masks are assigned to the
network interfaces, TCP checksum offload is disabled and
a loose source routing is allowed. Communication channel
bandwidths are configured using Linux traffic control tool, tc.

For the analyzed network, the worst-case traffic pattern
for OSPF was determined using the maximum matching
algorithm. The critical link for OSPF is the link between
Tukwila and Santa Clara. It gets congested when the following
pairs of nodes communicate with the maximum speeds: Oak

Brook - San Jose, Toronto - Palo Alto, Amsterdam - Santa
Clara, Tukwila - Irvine, Chicago - Tokyo, and Waltham -
El Segundo. The traffic between these nodes was set to the
value that causes the critical link utilization to be 100%. Then,
the LB-SPR is applied for the same traffic pattern. The link
utilizations for both OSPF and LB-SPR are observed using
the MRGT packet analyzer and plotted in Fig. 8. The link
utilizations in the case of OSPF are represented by the black
lines, and in the case of LB-SPR by the gray ones. The link
numbers in Fig.5 and Fig. 8 match. In Fig. 8, l′ denotes the link
connecting the same nodes as the link l, but in the opposite
direction. Only the results for the used links are plotted. It can
be observed that the OSPF protocol uses 13 links to route the
given traffic pattern, while the LB-SPR protocol uses 27 links.
At the same time, the congestion of the critical link is lowered
to 43.3% when LB-SPR is applied. Simulation results agreed
with the analytical results which confirmed the correctness
of the implementation. They show that LB-SPR balances the
traffic over the network links better than OSPF. If the critical
link 5 had two times lower capacity, LB-SPR would still pass
the traffic, while SPR would not.

VIII. CONCLUSION

In this paper, we presented a novel routing protocol for the
IP network, which is based on load balancing. This protocol
is automated as the existing routing protocols such as OSPF,
and adapts to the changes of the network topology. LB-
SPR calculates the traffic loads that the nodes can guarantee
to carry. Using the information about the guaranteed node
traffic loads, the bandwidth reservations become simple in
such a network, and, consequently can be made fast. Fast
and autonomic bandwidth reservations are important for the
multimedia applications whose popularity is growing. At the
same time, the LB-SPR protocol maximizes the node traffic
loads that can be guaranteed in the given network. It was
shown that LB-SPR improves the guaranteed traffic up to 7.7
times for the real networks that we considered, compared to
the shortest path routing protocols such as OSPF. Our analysis
showed that the gain of LB-SPR increases with the average
node degree, which is in agreement with the results for the
regular network topologies. We also implemented the LB-SPR
protocol using existing IETF standards, and integrated this
protocol into the TCP/IP stack. Virtual machines on multiple
computers were used to simulate and validate the network that
runs the implemented LB-SPR routing protocol.

Since LB-SPR is using the OSPF signaling, it inherits its
recovery speed which is insufficiently low for the interactive
applications. If a faster recovery mechanism is needed, it
can be employed at the lower layers as it is typically done.
Alternatively, the capacities can be overprovisioned to account
for the failures. We plan to compare the costs of the networks
using LB-SPR and OSPF in which the link capacities are
overprovisioned to pass given node traffic loads even when
single failures, of nodes or links, occur. Whenever the topol-
ogy changes, the balancing coefficients would be optimized
to utilize the network most efficiently. Also, we plan to
implement described bandwidth reservation mechanism using
the IETF protocols such as RSVP or SIP together with LB-
SPR as the underlying routing protocol.
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