
Design of multicast controller for
high-capacity Internet router

M. Blagojević and A. Smiljanić

Admissible multicast traffic can be efficiently handled in high-capacity
Internet routers using packet circulation. Presented is a practical algor-
ithm for the building and maintenance of the circulation tree, as well as
a report on its implementation. Its scalability and speed were assessed,
and shown to be satisfactory.

Introduction: Multicasting in high-capacity Internet has not been
resolved yet. Multicast traffic that we consider has one source and
multiple destinations. There are two main approaches for forwarding
of the multicast traffic through a crossbar. In the case of unicast cross-
bars, an input has to replicate a multicast packet, as many times as
there are output ports to which that packet is bound. So, if the input
sources popular multicast sessions, it might become clogged easily.
Alternatively, the crossbar might have a multicast capability, meaning
that one input might simultaneously send packets to multiple outputs.
However, it was shown that even if the optimal scheduling algorithm
is applied to the router, the speedup required to pass an admissible
traffic increases with the number of router ports [1]. On the other
hand, the high-capacity router could handle the multicast traffic well
when the packets are circulated through a unicast fabric [2, 3]. The
input is allowed to send incoming packets just to the limited number
of the ports belonging to the multicast set. In the next iteration, ports
which received forwarded multicast packets keep forwarding them, to
the limited number of ports from the multicast set which did not
receive that packet in previous iterations. As a consequence, transmission
load of the input port is spread over all ports in the multicast set. Packet
circulation is simple to implement. Packets are forwarded according to
the circulation tree corresponding to that multicast session. The circula-
tion tree is updated when users in the network join or leave the multicast
session. We propose a novel algorithm for the circulation tree calcu-
lation, and then report on the implementation of this new solution.

Balanced tree: Information about the circulation tree is kept distributed
among all ports belonging to the tree. Each port has its multicast tree
memory with one entry for each multicast session passing that port.
The memory address of the entry named as the session identification
number (SID) uniquely describes the session on that port. Only infor-
mation about its parent and child(ren) ports are kept in one entry. The
information about the port comprises its ID number (from 0 to N–1,
where N is number of ports) and its SID number of the given multicast
session. When a multicast packet arrives to the router (root port), lookup
has to be performed and its long multicast address is replaced with the
shorter SID. Then, the packet SID number is updated as this packet is
forwarded through the tree, as each parent knows its child SID. In this
way, the lookup that determines the next port based on its long multicast
address is avoided as the packet is being circulated through the router.
The multicast controller is the module that creates and maintains the cir-
culation trees based on the requests for adding new ports and removing
existing ports from their multicast sets. In order to service a new request,
the ports exchange internal control messages. In [3, 4], the multicast
controller determines the balanced tree which is the shallowest, thus pro-
viding the lowest delay. The balanced tree is achieved using branch
fanout numbers. The branch fanout denotes the number of nodes that
can be reached through the corresponding branch. Tree update is per-
formed so that the difference between fanout numbers, at any node, is
not greater than one. The main issue with updating the balanced tree
arises when the request for excluding some port from a multicast
session arrives. In order to keep the tree balanced, one of the leaf
ports ought to replace the leaving port. The parent and children ports
need to update their tree memories accordingly. In order to perform
update, the SID corresponding to the multicast session of the leaving
port has to be obtained. Therefore, each port should have a lookup table
that maps the multicast address to the corresponding SID number. This
lookup table is accessed only when the port is leaving. However, it
consumes a considerable memory at each port.

Binary tree: When the request for adding a new port arrives, the control
message is forwarded from the root node, through the tree, until the leaf
node is reached. Each port forwards the control message according to its
ELECTRONICS LETTERS 31st January 2008 Vol. 4
tree level and the new port ID. Namely, if we denote the ith bit of the
new port ID as ID(i) (i ¼ 0 denotes MSB), then the control message
will be forwarded to the right child at level i if ID(i) ¼ 1, and to the
left child if ID(i) ¼ 0. The described procedure is shown in Fig. 1.
Bold font is used to show bits that define the path from the root to the
corresponding port.

Fig. 1 Handling request for adding port 1100(12) to forwarding tree

The procedure for removing a port from the forwarding tree consists
of two steps. First, the path from the root to the leaf node through the
port on leave is selected (bold path in Fig. 2a). Then, the leaving port
is removed from the tree and all ports down the selected path are
moved one level up. Each of those ports is moved to the position of
its parent node. The first part of the path, up to the leaving port, is
selected using the leaving port ID. The remaining part of the path,
from the leaving port to the leaf node, is selected arbitrarily. The com-
plete procedure of replacing the port on leave is shown in Fig. 2.

Fig. 2 Handling request for removing port 1010(10) from forwarding tree

a Patch selection
b Updated tree

Assuming the described procedures for adding and removing the ports,
the position of each port in the tree is determined by the port ID. It is easy
to see that the maximal number of tree levels is log2N–1, and it limits the
total forwarding delay. In addition, the multicast controllers do not
require additional lookup tables.

Performance and scalability assessment: A multicast controller based
on the proposed binary tree algorithm is implemented on the FPGA
device (Altera Cyclone II EP2C70F896C6). The implemented structure
is shown in Fig. 3. Each port has its own multicast controller module.
The crossbar scheduler, implemented in [5, 6] is included in that
module. Each module can receive packets from two sources: new
packets, which just enter the router and old packets, processed by
other modules and passed through the crossbar. A multiplexer is
included in each module to provide handling of packets arriving simul-
taneously from both sources. Multiple modules can fit the single chip.
The number of modules on the single chip depends on the size of avail-
able memory, and the number of available pins. Simulations were
performed for two different cases. In the first, one I/O pin is used for
one signal, while in the second case two signals are multiplexed on
the single pin. Simulation results are presented in Table 1. Numbers
of modules per chip and processing time are denoted with Npm and
4 No. 3

TS, respectively. From the column ‘Lim’ it can be seen which factor
limits the number of input modules that fit one FPGA device: the size
of available memory (M4k), or the number of available pins (Pin).

Fig. 3 Multicast controller structure

Table 1: Simulation results

Simulation case 1 Simulation case 2

N Nm Ts (ns) Lim Npm Ts (ns) Lim

8 8 40.95 – 8 40.25 –

16 10 42 Pin 16 44.34 –

32 8 46.06 Pin 16 47.82 M4k

64 7 48.18 Pin 12 48.51 M4k

128 5 49.26 Pin 7 49.71 M4k
ELECTRONIC
Conclusion: The proposed algorithm provides fast and flexible tree
update. Control messages are always propagated in the same direction,
from the root to the leaf node. Thus, there is no problem with obtaining
SID numbers as in the case of the balanced tree. Scalability is assessed
in terms of the number of modules that can be fit on the single chip and
satisfactory results are obtained. Achieved processing time is less than
50 ns, which is tolerable by the delay sensitive applications.

The Institution of Engineering and Technology 2008
28 September 2007
Electronics Letters online no: 20082789
doi: 10.1049/el:20082789

M. Blagojević and A. Smiljanić (Belgrade University, Belgrade, Serbia)

E-mail: milosdb@etf.bg.ac.yu

A. Smiljanić: Also with Stony Brook University, New York, USA

References

1 Marsan, M.A., Bianco, A., Giaccone, P., Leonardi, E., and Neri, F.:
‘Optimal multicast scheduling in input-queued switches’. Proc. of
IEEE Int. Conf. on Communication 2001, Helsinki, Finland, June 2001

2 Smiljanić, A.: ‘Flexible bandwidth allocation in high-capacity packet
switches’, IEEE/ACM Trans. Netw., April 2002, pp. 287–293

3 Smiljanić, A.: ‘Scheduling of multicast traffic in high-capacity packet
switches’, IEEE Comm. Mag., (IEICE/IEEE HPSR), November
2002, pp. 72–77

4 Blagojević, M., Smiljanić, A., and Petrović, M.: ‘Design of the multicast
controller for the high-capacity Internet router’. Proc. of IEEE High
Performance Switching and Routing 2007, New York, USA, June 2007

5 Petrović, M., and Smiljanić, A.: ‘Optimization of the scheduler for the
non-blocking high-capacity router’, IEEE Comm. Lett., 2007, 11, (6),
pp. 534–536

6 Petrović, M., Blagojević, M., Joković, V., and Smiljanic, A.: ‘Design,
implementation, and testing of the controller for the terabit packet
switch’. Proc. of IEEE Int. Conf. on Communications Circuits and
Systems 2006, Guilin, China, June 2006
S LETTERS 31st January 2008 Vol. 44 No. 3

