
Oblivious Routing Scheme
Using Load Balancing Over Shortest Paths
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Abstract—In this paper, we propose the oblivious routing
scheme based on shortest-path routing and load balancing. We
present the LP model that finds the optimal routing. Then
we compare the performance of the proposed scheme with the
performance of the shortest-path routing for some regular and
real-case network topologies. We show that the proposed routing
strategy allows to achieve higher guaranteed traffic from/to a
node in the network, compared to the case of the classical
shortest-path routing.

I. INTRODUCTION

The choice of the routing strategy has a large impact on the
overall network performance. It is very important to choose a
routing scheme that optimizes the utilization of the network
resources. Bad routing decisions can put very high loads on
some links, thereby seriously lowering the throughput. On the
other hand, the appropriately chosen routing strategy can make
the most of the given network resources, allowing it to achieve
the maximum possible throughput.

If the network topology and the exact traffic demands are
known, the problem of determining the optimal routing can
be solved by a linear program (LP). However, it is practically
impossible to measure and predict the actual traffic demands.
Even if it was possible to do so, it would still take time to
solve the optimization problem, and frequent changes in the
routing strategy could lead to service disruptions.

The common approach to solving the routing problem is
the oblivious routing design. Generally, a routing is considered
to be oblivious if routing decisions for a particular flow are
made independently of other traffic demands. In other words,
the path or the set of possible paths are predetermined for
every source-destination pair, and routing decisions are made
by the originating nodes based only on the traffic destination.
The problem of finding the optimal oblivious routing for the
changing source-destination traffic demands has been studied
by many authors. A non-polynomial solution for general
networks, based on graph decomposition, was proposed in [8],
and was later followed by the polynomial-time algorithm in
[9], [10]. In [3], [4] linear programming was used to find the
optimal routing strategy.

A different approach was introduced by Kodialam et al.
in [6], [7]. It is much easier to estimate the total incom-
ing/outgoing traffic for a particular node, than to predict the
actual traffic distribution. In fact, we always know the upper

This paper was partly supported by the Ministry of Science of Republic of
Serbia grant for graduate students.

limit for the node traffic - it cannot be higher than the sum
of link capacities entering or leaving the node. Kodialam et
al. introduce the two-phase routing scheme, based on load
balancing. The concept of load balancing allows them to
calculate the source-destination traffic demands based on the
incoming/outgoing node traffic. Then they solve the general
linear programming problem of routing coefficients optimiza-
tion. In [6], a linear program for the capacity minimization was
presented, and in [7], the comparisson of the performance of
the proposed routing strategy versus the performance of the
shortest-path routing was done for one network topology and
four different traffic matrices.

In this paper, we propose the routing strategy that is similar
to the one presented by Kodialam et al. We use load balancing
and every flow is routed in two stages. The difference is that
we use the shortest-path routing as the underlying routing
scheme. This allows us to significantly simplify the LP model
- we only optimize the node weights, since the routing
coefficients are already determined. Our model, therefore, has
only O(N) variables, compared to O(N 2M) in [6] (where
N and M are the number of nodes and links in the network,
respectively). The main advantage of the proposed strategy is
the simplicity of its implementation. The shortest-path routing
is most widely used, and the proposed scheme represents a
modification that could easily be brought to life. We compare
the performance of the proposed strategy with the performance
of the classical shortest-path routing, and show that the pro-
posed strategy can support significantly higher traffic demands.

II. PRELIMINARIES

In the process of network designing and planing, it is
important for the network operators to estimate the maximum
number of users that can be served by a network node in every
circumstance. When the user bit-rates are known, this problem
is equivalent to determining the maximum admissible node
traffic , i.e. the maximum incoming/outgoing node traffic that
can be routed through the network, regardless of the actual
traffic-pattern. In this paper we present the load balanced
routing (LBR) scheme and compare it with the shortest-path
routing (SPR). We calculate the maximum admissible node
traffic for both LBR and SPR, and show that LBR allows
larger values of the maximum admissible node traffic (and the
larger number of users, consequently).

Assume that the network is represented by a directed graph
G = (V, E), where V is the set of nodes (vertices) and E is



the set of links (edges). The number of nodes in the network
will be denoted by N and the number of links by M .

Let i be a source node. The outgoing traffic generated by
i equals si =

∑
j∈V dij , where dij is the intensity of a flow

from i to j . Similarly, for j being the destination node and
rj its total incoming traffic, we have rj =

∑
i∈V dij .

Matrix TM = [dij ]N×N will be referred to as traffic matrix,
and vectors S = [s1, s2, . . . , sN ] and R = [r1, r2, . . . , rN ] as
out-traffic vector and in-traffic vector.

The elements dij of the traffic-matrix TM are hard to
predict, especially as the peer-to-peer traffic is becoming
dominant on the Internet. On the other hand, the in-traffic
and out-traffic vectors can easily be estimated, based on the
number of users attached to the node and their bit-rates. In
our analysis we will focus on the backbone network. In this
case, we can consider that the in-traffic and out-traffic vectors
are equal (S = R). To simplify the analysis, we will assume
that all the nodes have equal traffic demands, s i = s, for
i = 1, N . The same analysis can apply to the case with unequal
node demands, if we represent every node by a set of fully
connected basic nodes with equal demands.

The maximum admissible node traffic is determined by the
network congestion. Congestion Q depends on the routing
and the actual traffic-pattern, and is defined as the maximum
link utilization in the network. Link utilization represents
the ratio of the link load, L(l), and link capacity, C(l), i.e.
U(l) = L(l)/C(l). Thus, Q = maxl∈E U(l). The link with
the highest utilization is the first one to get overloaded, as the
traffic demands increase. Every flow in the network can be
increased up to 1/Q times, without causing the link overload.
Therefore, minimizing the congestion maximizes the allowed
traffic values.

It has been realized in practice and some regular networks
that load balancing decreases the congestion. We use this
concept in our load balanced routing (LBR) design, to increase
the maximum admissible node traffic. The traffic from i to j is
not sent directly. Instead, it is split in portions that are directed
to intermediate nodes m ∈ V first - Fig. 1. For all pairs (i, j),
the portion of a flow dij that is balanced across a node m

equals km. Obviously,
∑N

m=1 km = 1. In the next step every
intermediate node m forwards the received traffic to its final
destination j. Traffic from i to m and from m to j is routed
along the shortest paths. We will show that this routing strategy
increases the maximum admissible node traffic, compared with
the case of classical shortest-path routing.

III. PERFORMANCE ANALYSIS

We will compare the performance of the proposed load
balanced routing (LBR) with the performance of the shortest-
path routing (SPR). We use the maximum admissible node
traffic as the measure of the routing performance on a par-
ticular network. In this section, we describe the LP model
used to calculate the optimal node weights km, for which
the maximum admissible node traffic in the case of LBR is
achieved. Then we describe the algorithm used to calculate
the maximum admissible node traffic for SPR.
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Fig. 1: Routing Scheme Illustration

A. Performance Analysis of the Load Balanced Routing (LBR)

We will determine the optimal values of node weights
km to achieve the maximum admissible node traffic. As
already mentioned, the maximum admissible node traffic is
proportional to the inverse of congestion. In order to maximize
the admissible traffic, we will actually solve the congestion
minimization problem.

The traffic from i to j is not sent directly. It is first balanced
across intermediate nodes m ∈ V . The traffic between nodes
i and m consists of two components: load generated by i and
balanced across m (denoted by b

(1)
im) and load for m balanced

across i (denoted by b
(2)
im). Thus, bim = b

(1)
im + b

(2)
im .

The traffic that a node i balances across m equals

b
(1)
im =

∑
j∈V

kmdij = kmsi. (1)

At the same time, the portion ki of every flow dpm, p ∈ V
is balanced across i. The traffic that i has to forward to m
equals

b
(2)
im =

∑
p∈V

kidpm = kirm. (2)

Let the variable F
(l)
im take the value 1 if the link l belongs to

the shortest path between the nodes i and m, and 0 otherwise.
This variable is calculated based on the OSPF routing tables.
For the link load L(l), we have

L(l) =
∑

(i,m)
F

(l)
im (b(1)

im + b
(2)
im). (3)

Link utilization is given by the formula

U(l) = L(l)/C(l) =
∑

(i,m)
F

(l)
im (b(1)

im + b
(2)
im)/C(l). (4)

The general-case formulation of the linear program that
minimizes congestion has the form:

min Q

(C1)
∑N

i=1 ki = 1

(C2) ∀l ∈ E :
∑

(i,m)
F

(l)
im

(kirm+kmsi)

C(l) ≤ Q

(C3) Q ≤ 1
(C4) ∀n∈ V :

∑
l∈IN(n)

L(l)− ∑
l∈OUT(n)

L(l)=rn−sn.

(5)

Sets IN(n) and OUT(n) represent the set of incoming and out-
going links of a node n, respectively. This problem has N +1
variables - k1, k2, . . . , kN and Q. The number of constraints
is M + N + 2 (not counting non-negativity constraints).



We will prove that if for every node the incoming equals
the outgoing traffic, the flow conservation constraints (C4) are
superfluous.

Lemma 1: If rn = sn the constraint (C4) is redundant.
Proof: When rn = sn, after substituting L(l) from Eq.

3, constraint (C4) becomes∑
(i,m)

l∈IN(n)

F
(l)
im(kism+kmsi)=

∑
(i,m)

l∈OUT(n)

F
(l)
im(kism+kmsi).

(6)
For i �= n, m �= n , node n can either be on the shortest path

between i and m or not. If it is not on this path, then there is
no link l ∈ IN(n) or l ∈ OUT(n) such that F

(l)
im = 1, and the

term kism + kmsi does not appear in the equation. If n is on
the shortest path, then there is exactly one link entering and
one leaving this node with F

(l)
im = 1, so the term kism +kmsi

appears on both sides of the equation, and can be eliminated.
This leaves only the terms associated with i = n or m = n.

Let us now consider the case when i = n, i.e. n is the
source node. For any m, there can be no link l ∈ IN(n) such
that F

(l)
im = F

(l)
nm = 1 (otherwise the path from n to m would

contain a loop, and would not be the shortest path). Similarly,
if m = n, i.e. n is the destination node, there can be no link
l ∈ OUT(n), such that F

(l)
im = F

(l)
in = 1.

Thus, we can rewrite the Eq. 6 in form:∑
i

l∈IN(n)

F
(l)
in (kisn+knsi)=

∑
m

l∈OUT(n)

F (l)
nm(knsm+kmsn).

(7)
If the network is connected, there is a path between every

pair of nodes. For any i there is exactly one link l ∈ IN(n)
such that F

(l)
in = 1, so for every i the term kisn + knsi

appears exactly once on the left hand side of the Eq. 7.
Similarly, for any m there is exactly one link l ∈ OUT(n),
such that F

(l)
nm = 1. For every m, the term knsm + kmsn

appears exactly once on the right hand side. Equation 7
always holds, because it holds

∑
i∈V knsi =

∑
m∈V knsm and∑

i∈V kisn =
∑

m∈V kmsn = sn. Thus, the initial constraint
is always fulfilled and is therefore not necessary to add it to
the model.

As said before, we consider that all the nodes have equal
traffic demands si = s. If we normalize s = 1, we have the
following form of the linear program:

min Q

(C1)
∑N

i=1 ki = 1

(C2) ∀l ∈ E :
∑

(i,m)
F

(l)
im

(ki+km)

C(l) ≤ Q

(C3) Q ≤ 1

(8)

This model now has N+1 variables and M+2 constraints. The
optimal (minimum) value Q implies the maximum admissible
node traffic for LBR

slbr
max = 1/Q, (9)

since all the traffic demands can be increased up to 1/Q times
without causing the overload of the most highly utilized link.

(a) (b) (c)

Fig. 2: Regular topologies. (a) Ring. (b) Manhattan. (c) Torus.

B. Performance of the Shortest Path Routing (SPR)

We will determine the maximum admissible node traffic for
SPR. For every link, we find the maximum matching of the
sources and the destinations using the link. Based on the size
of the matching, we calculate the highest node traffic allowed
on that link. The lowest value of the allowed node traffic
among all the links in the network represents the maximum
admissible node traffic. In this subsection we describe the
algorithm in more detail.

Link load depends on the number of source-destination pairs
that communicate across the link. Denote the set of all node
pairs that use the link l as P (l) =

{
(i, j)|F (l)

ij = 1
}

. Node

i sends the traffic ti(l) =
∑

j|(i,j)∈P (l) dij across l. Traffic-
matrix is admissible if

∑
i ti(l) ≤ C(l) for all l ∈ E.

Observe link l ∈ E. Define the set of sources sending
their traffic across l, I(l) = {i|∃j, (i, j) ∈ P (l)} , and the
set of destinations receiving the traffic across l, J(l) =
{j|∃i, (i, j) ∈ P (l)} . We suppose that all the nodes i ∈ V
have equal, symmetrical traffic demands, s i = ri = 1. Traffic-
matrices that put the highest load on the observed link are
those with ti(l) = si = 1, for all i ∈ I(l).

Let us form a bipartite graph with I(l) and J(l) as the sets
of nodes. Let there be an edge in the bipartite graph between
every pair of nodes (i, j) ∈ P (l) (note the difference between
these edges and the links in the network, they are not related).
According to the Birkhoff-von Neumann theorem and [12], in
the worst case every node i ∈ I(l) sends the traffic s = 1,
and every node j ∈ J(l) can receive at most r = 1. The
maximum load of the link l in this case equals the size of
the maximum matching for the bipartite graph, p(l). The link
utilization is U(l) = p(l)/C(l), and implies the maximum
node traffic allowed on link l to be a(l) = C(l)/p(l). We
assume that all the nodes in the network have equal traffic
demands, so this restriction applies to all of them, and not
only to the nodes included in the maximum matching.

The maximum admissible node traffic for the whole network
is sspr

max = minl∈E a(l). We calculate it using the algorithm:

• Step 1: (Initialization) Set sspr
max = ∞ and X = E.

• Step 2: Take l ∈ X . Determine I(l) and J(l). Form a
bipartite graph, with I(l) and J(l) as the sets of nodes,
and edges between pairs (i, j) ∈ P (l).

• Step 3: Find the maximum matching for the bipartite
graph. Let p(l) denote the number of matched pairs.

• Step 4: Calculate a(l) = C(l)/p(l).



• Step 5: If a(l) < sspr
max, let sspr

max = a(l).
• Step 6: X = X\ {l}. If X �= ∅, go to Step 2; else stop.

IV. RESULTS

We compare the maximum admissible node traffic for LBR
and SPR. In particular, we determine the performance gain

G = slbr
max/sspr

max, (10)

for some regular topologies and examples of real networks.
The value slbr

max is determined using the linear program (8),
while sspr

max is determined as described in Section III-B.

A. Regular Topology Networks

In this section we analyze the performance of the proposed
routing strategy for some regular network topologies: ring,
Manhattan, torus and full-mesh - Fig. 2. In some of these
topologies there are multiple shortest paths between two nodes.
We analyze two cases of the underlying shortest-path routing:
the case when the traffic is routed along the axes of a grid in
a predetermined order, and the case used in practice, when the
path is chosen based on the next hop node ID number.

Let us observe LBR in the case of the underlying shortest-
path routing along the axes. We suppose that all the nodes
have equal traffic demands si = s = 1. Due to the symmetry,
all links are equally loaded, and the optimal coefficients km

are equal, km = 1/N . Based on Eq. 1 and Eq. 2, the flow
between two nodes in the network equals

b = b
(1)
ij + b

(2)
ij = 2s/N = 2/N. (11)

1) Ring: The average path length of a flow in the ring
network in the case of routing along the axes equals lav =∑�N/2�

i=1 (2i/N) ≈ N/4. Since the number of directed links is
2N , and there are N 2 node pairs, the expected link load in
LBR case is Llbr(l) = lavbN2/2N ≈ N/4, (Eq. 11). There-
fore, the maximum admissible node traffic s lbr

max = 4C/N
(Eq. 9). For SPR, the worst case is when only the pairs of the
most distant nodes communicate, and exactly 	N/2
 flows are
routed across every link. This implies the maximum allowed
node traffic sspr

max = 2C/N . Therefore, the gain is G = 2.
The gain is plotted in Fig. 3a. The dashed line represents

the above derived result, and the full line the results in the
case when node enumeration affects the choice of the path.

2) Manhattan: Manhattan has the form of two-dimensional
grid, with rows and columns circularly connected - Fig. 2b.
In a symmetrical Manhattan, both dimensions of the grid are
equal (D), while in a non-symmetrical case they differ.

Let us analyze the case of routing along the axes in a sym-
metrical Manhattan, with N = D2 nodes. The average length
of the path in each of the directions is lav ≈ D/4. Since the
total number of horizontal (vertical) links is 2N , the expected
load of a link for LBR equals Llbr(l) = lavbN

2/2N ≈ D/4,
(Eq. 11). This implies slbr

max = 4C/D. In the worst-case
scenario for SPR, only pairs of the most distant nodes com-
municate. For the presumed routing strategy, the maximum
number of node pairs that can use one link in the network
equals D/2. Thus, sspr

max = 2C/D, and G = 2.
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Fig. 3: Gain for regular network topologies. (a) Ring. (b)
Symmetrical Manhattan. (c) Torus. (d) Full-mesh.
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Fig. 4: Gain for a non-symmetrical Manhattan network. One
side of the grid is D.

The gain for the symmetrical Manhattan is plotted in Fig.
3b. The dashed line represents the results in case of the routing
along the axes, and the full line in case of the routing based
on the node enumeration. We can observe that the gain in
the second case is significantly higher than 2 and increases
with the dimension of the grid. Fig. 4. represents the results
for the non-symmetrical Manhattan, assuming the underlying
shortest-path routing based on node enumeration. The gain
depends predominantly on the shorter dimension of the grid;
for larger values of the longer dimension, it remains constant.



TABLE I: Results for the six Rocketfuel network topologies
NETWORK NODES LINKS GAIN MODEL SIZE TIME [seconds]

variables constraints load data presolve solver total
Telstra (Australia) 1221 104 302 2.141 105 304 3.984 0.032 0.062 4.078

Sprintlink (US) 1239 315 1944 7.548 316 1923 51.015 0.282 4.750 56.047
Ebone (Europe) 1755 87 322 2.012 88 316 3.360 0.015 0.063 3.438
Tiscali (Europe) 3257 161 656 7.217 162 629 12.640 0.063 0.922 13.625

Exodus (US) 3967 79 294 6.057 80 282 2.734 0.016 0.062 2.812
Abovenet (US) 6461 138 744 4.576 139 720 9.843 0.063 1.047 10.953

3) Torus: Torus has the form of a three-dimensional
circularly-connected grid - Fig. 2c. In a symmetrical case,
all three sides of the grid are D. The average path length in
each of the directions is D/4. As in the Manhattan network,
the expected link load for LBR is Llbr(l) ≈ D/4, and
slbr

max ≈ 4C/D. For SPR, the maximum number of most
distant node pairs that can communicate across one link equals
D2/2. This implies sspr

max = 2C/D2, and G = 2D = 2 3
√

N .
The results are shown in Fig. 3c. Again, the full line

represents the gain in case when the choice of the path
depends on the enumeration of the nodes. In this case, the
gain increases even faster with the number of nodes in the
network.

4) Full-mesh: Each node in a full-mesh is connected with
all the other nodes and has the degree of N − 1. The load
of a link in the LBR case is Llbr(l) = 2/N (Eq. 11), and
slbr

max = CN/2. In the case of SPR, only one flow is routed
across each link, so sspr

max = C. Therefore, G = N/2. The
calculated gain is presented in Fig. 3d.

We can observe that load balancing produces gain even for
the simplest topology such as ring. The gain increases with
the degree of a node in the network, and is proportional to the
number of nodes for the full-mesh topology.

B. Real Case Networks

Router-level ISP network topologies are usually considered
confidential and are not publicly available. In Rocketfuel
project [11], the authors made an effort to estimate the
topologies of major US, European and Australian ISPs, based
on routing information. We use their data for six backbone-
level topologies. Since the original data provides only link
weights, we assume that the capacity of a link is inversely-
proportional to its weight.

We suppose that all nodes generate equal traffic si = 1.
Results of the analysis are listed in Table 1, together with
times needed to find the optimal values km for the LBR case.

The time that LP Solve solver needs to find the optimal
solution to a linear program is predominantly determined by
the time needed to load data. This is actually the time that
the algorithm takes to calculate link loads based on values
F

(l)
ij and add the constraints to the model. LP Solve seems

to have a problem with longer data loading times [13], so
the optimization time could be improved by using another
optimization tool.

The routing scheme with load balancing provides gain in
guaranteed node traffic for all topologies, when compared

with shortest-path routing. For AS 1221 (Telstra) and AS
1775 (Ebone), this gain is two. Australian network has the
topology of a ring between major cities, and sparks elsewhere,
so this only confirms the theoretical results. European network
topology seems to be highly meshed, but the link weights
indicate that the traffic is predominantly directed across a ring
connecting major cities, which can explain the results. For the
remaining four well meshed topologies, the significant gain in
range 4.5-7.5 is achieved.

V. CONCLUSION

In this paper we showed that the guaranteed node traffic
can be significantly increased when the load-balancing routing
scheme is deployed. The gain that can be achieved for many
topologies is significant, and grows with the degree of a node
in the network. It is shown that gain is achieved for all major
ISP topologies. The implementation of this routing scheme
would make it possible to satisfy greater demands without
changing the network topology. Since it is based on the OSPF
algorithm, and a simple linear programming algorithm, the
required network upgrade is of an acceptable complexity.
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[2] J. Matoušek, B. Gärtner, Understanding and Using Linear Programming,
Springer Verlag, 2007.

[3] D. Applegate and E. Cohen, ”Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs,” Proc. of SIGCOMM ’03, 2003.

[4] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, ”Optimal oblivious
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