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Abstract—There is an increased demand for new functionalities
of the network equipment. Smaller companies that develop
such functionalities build their products based on the open-
source solutions. Linux is currently the most popular open-source
operating system and thus the majority of products are based
on it. As MPLS is becoming indispensable in the network core,
the need for more stable version of MPLS for Linux becomes
evident. Thus, this work focuses on the improvement of MPLS
implementation for Linux kernel. It presents architecture and
performance of this implementation. Its performance is compared
to the performance of IP packets forwarding and existing MPLS
implementations.

Index Terms—MPLS; Linux; performance evaluation;

I. INTRODUCTION

Multi Protocol Label Switching (MPLS) [1] represents a
simple technology, which is today indispensable in network
cores. MPLS protocol adds a 32-bit header between the second
and the third network layer headers. Within these 32 bits, 20
bits are reserved for the label, 3 bits for the Traffic Class (TC)
field, 1 bit for the Bottom of Stack (S) field and the remaining
8 bits are reserved for the Time to Live (TTL) field. A traffic

Fig. 1. MPLS Header

class carried by means of a MPLS packet is defined based
on the TC field. Definition of an S field enables assigning of
several labels to the packets. In the label grouping, only the
lowest label, closest to the IP packet, has S bit set to 1. All
other labels in the label stack have S set to 0. TTL field is
used just like a TTL field of the IP packet.

Forwarding of packets in MPLS network is done on the
basis of the labels, which have a local significance only. The
first benefit here is a shorter time needed to define a next
packet hop. In IP networks, the lookup currently represents a
bottleneck in forwarding of packets. The transition from IPv4
to IPv6 protocol provides for the increase of addresses from
32 to 128 bits. As a consequence, the lookup, which has to
be performed for each packet, becomes even more complex.
The primary benefit of MPLS is seen in the fact that only the
ingress router in MPLS network (LER - Label Edge Router)
performs an IP lookup. Based on this lookup, it adds a label
to the packet, and forwards it into the MPLS network. In
other MPLS network routers (LSR - Label Switching Router),

next hop decisions are exclusively made based on the label
of packet, which is modified in every router, thus having only
local significance and due to this it can be significantly shorter.

The second benefit of MPLS technology is that it provides
an explicit traffic engineering (TE) [2]. It enables routing of
specific traffic flows through paths that meet relevant quality
of service (QoS) requirements and incur a more balanced
traffic load on links. By enabling a more balanced use of
links, it prevents the situation where there is congestion in
one part of the network while other parts are feebly used.
TE is most frequently enabled by establishing explicitly label
switched paths (LSP). Explicit LSPs can be managed manually
or by means of a routing protocol (RSVP-TE or CR-LDP).
Depending on the needs, LSPs can be configured to route a
different kind of traffic to the same destination by means of
various defined paths. Routing paths are provided depending
on the QoS needs for separate traffic flows. Attributes can be
assigned to each LSP, such as a minimum delay, jitter and
bandwidth, which it needs to meet.

This paper will present the work on the applicable version
of MPLS for Linux [3]. The goal is to improve performance
and utilization of the MPLS current version. Our work is under
the GNU GPL license and may be accessed at [4]. In parallel
to the development of this MPLS version, we have developed
an improved version of iproute2 utility suite, which can be
accessed at [5]. This paper will show significant improvements
of the new MPLS implementation compared to the previous
solution.

Section 2 presents previous MPLS implementations. Section
3 describes the MPLS architecture in Linux kernel and our
key contribution to the implementation. Section 4 analyzes the
performance achieved by the improved MPLS, which is then
compared to the performance of IP forwarding implemented in
Linux, and to the performance of the implementations provided
by other authors. Finally, a conclusion and guidelines for
future work are given.

II. RELATED WORK

Nowadays, new companies, emerging on the market, be-
come increasingly dedicated to the development of products
based on open-source software solutions. This is how they save
time for the development of new products. Besides saving their
time and money, they make a contribution to the development
of open-source software solutions. Users also benefit from
this way of work by getting ready flexible solutions that can
be easily upgraded with the appearance of new technologies,



MPLS being one of those technologies. As MPLS has recently
become indispensable in core networks, there is an increasing
need for operational and stable implementation of MPLS into
operating systems (OS).

In view of the fact that Linux is the most popular open-
source OS, the greatest need for MPLS implementation lies
precisely there. The development of MPLS version for Linux
was started by James Leu in 1999. At the same time,
LDP protocol on Quagga software router was developed [6].
Unfortunately, LDP was never completed and has limited
functionalities.

Of all open-source OSs only NetBSD OS, starting from
version 6.0, officially incorporates MPLS in its network code,
to the best knowledge of authors [7]. Together with this
implementation, NetBSD also implements the LDP routing
protocol for the distribution of MPLS labels [8].

Currently, there are some efforts to incorporate MPLS into
the FreeBSD code [9]. This implementation is not officially
supported in FreeBSD and is not fully functional. Simulta-
neously, LDP protocol is developed for the Bird software
router [10]. LDP protocol for Bird is currently at beta phase.
Bird, apart from operating on FreeBSD, can operate on Linux
and NetBSD, as well. In order to be able to use this LDP
implementation on other OSs as well, it would be needed to
add a code for communication with the MPLS module of the
other OSs.

Last year, MPLS was experimentally implemented within
the OpenFlow [11], thanks to efforts made by Ericsson re-
searchers [12]. OpenFlow represents a new open protocol that
defines the communication of the network controller with the
switch core. However, this implementation is still at an early
experimental stage of development. Route entries in the MPLS
routing table (LFIB - Label Forwarding Information Base) can
be written only by means of xml files. The other problem is
that the controller cannot process packets coming with several
labels. Authors have tested the solution using a PC for LFIB
maintenance, and a NetFPGA card for packet forwarding.
Label manipulation functions in LFIB are taken from the
existing MPLS implementation for Linux. The authors made
a Python daemon, which was used for the periodic refresh of
LFIB on the NetFPGA card, using the information from LFIB
in the Linux kernel. Forwarding of MPLS packets through the
NetFPGA card can achieve the maximum port utilization, as
expected.

Relying on the MPLS implementation in OpenFlow, Stan-
ford researchers have implemented a functionality of MPLS
control protocols within NOX network OS [13]. NOX repre-
sents an OS that supports centralised network operation. This
work does not aim to solve the problems that existed in the
MPLS OpenFlow implementation. Functionalities of MPLS
control protocols, such as RSVP-TE and LDP, have been
successfully demonstrated in a virtual domain, on a Mininet
platform.

Another MPLS implementation was presented in [14].
This implementation is based on a Click Modular Router.
Basic operations of swapping, popping and pushing labels

were defined within the implementation. The implementation
was successfully tested. Unfortunately, unlike the previously
presented implementations, this one is not an open-source
implementation.

The MPLS version presented in this paper is a scalable,
flexible and expandable solution. Unlike other implementa-
tions, our implementation allows for the manipulation of the
TC field. As an additional advantage, it is easy to map
values of DSCP field from the IP header into the TC field.
This implementation has a unique capability of making a
recursive query in the MPLS routing table. The advantage
over the OpenFlow implementation is an easiness of enter-
ing/modifying/deleting labels from routing tables, owing to
the fact that our implementation manipulates the data in LFIB
simply by means of a command line and not xml files. The
other advantage is the ability to manipulate packets that have
several labels assigned. As we will show, our implementation
can achieve higher speeds than some of the previous solutions.

A licensing method is inherited from the original MPLS
implementation for Linux. This implementation of ours can
be located under the GNU GPL license. This means that all
interested parties are free to use it and adjust it to their needs
without any remuneration.

III. MPLS IMPLEMENTATION

This section is aimed at presenting the implementation
architecture and the key improvements achieved with respect
to the original version of MPLS in Linux. Section III-A shows
the MPLS implementation architecture, while section III-B
presents our key improvements of the original version.

A. Architecture of MPLS Implementation in Linux

MPLS implementation is devised to be integrated in the
network part of Linux code. Just like the MPLS header is

Fig. 2. MPLS implementation in Linux kernel

located between the second and the third network layer, the
MPLS code is located between the IP code and the code



managing the functions of the second network layer. This is
shown in Fig. 2.

In the implementation itself, LFIB is split into two parts [1].
The incoming part of LFIB is called ILM (Incoming Label
Map) and outgoing part is called NHLFE (Next Hop Label
Forwarding Entry). Entries in the NHLFE table keep MPLS
instruction sequences that are executed over the packet. An
interface between IP and MPLS layers is realized via the
NHLFE table. When a packet is forwarded from IP layer to
MPLS layer, it needs to know to which entry in the NHLFE
table it should be forwarded to.

A sequence of instructions, to which each NHLFE entry
must point, is presented with the linked list of elements. Each
element is related to only one function performing packet
manipulation. Basic instructions are pop, push, send and peek.
Label removal from MPLS packet is done by means of a pop
instruction. Adding MPLS labels to packets is done by means
of a push instruction. As for the send instruction it serves for
the sending of packets to the next hop. When its last label
is taken off, a MPLS packet can be forwarded to the send
instruction and then to the next router without returning to the
IP layer. This is called MPLS penultimate hop popping (PHP).
By using MPLS PHP, resources of the router and its next-hop
router are conserved as they do not have to do both the MPLS
and the IP lookup, but only one of them. The peek instruction
is performed in two ways. In case all labels are removed from
the packet, the corresponding element forwards the packet for
processing to the IP layer, and in case some labels remain, the
packet is returned to the MPLS layer for additional processing.
The swap instruction is not specially defined. It is presented
with the combination of pop and push instructions. Apart from
basic instructions, instructions of mapping TC field, mapping
of TC field depending on DSCP field and mapping of DSCP
field depending on TC field are also defined.

MPLS lookup is done through the ILM table. Entries of the
ILM table are uniquely defined by the label and label space.
The MPLS label space is a domain where label definitions
must be unique. The same labels, however, may be defined in
the system, but they must belong to different label spaces.
The MPLS label space may be defined for an individual
interface or an interface group. Each ILM entry must contain
a pointer to the NHLFE entry, so that it could forward
the received MPLS packet for further processing. When the
lookup algorithm finds a relevant ILM entry based on the
label from the packet header and label space of the port
from which the packet has arrived, the packet is forwarded
to the relevant NHLFE table entry. An option to forward the
packet to different NHLFE entries depending on the TC field
values has been implemented as well. Fig. 3. shows a flow of
packets through MPLS code while performing a MPLS swap
instruction.

The iproute2 utility suite has been expanded to enable the
MPLS administration. The communication between processes
in kernel and iproute2 programme is done exclusively by
means of Netlink protocol. This is very important, since the
ioctl communication is outdated and overall communication

Fig. 3. Flow of packets through MPLS subsystem at MPLS swap function

with kernel tends to be performed via Netlink protocol.

B. Improvements of MPLS Original Version for Linux

The original version of MPLS, which was the starting point
for this work, was good conceptually, but its implementation
still has many pending problems. Beside the pending bugs, the
last MPLS version was designed for an outdated version of
kernel. The current version of the Linux kernel is 3.2.1. while
the last version for which MPLS was written is 2.6.35. Big
discrepancies existed between those two versions in respect of
a network code that needed to be overcome.

First, we resolved the system failure problem, which oc-
curred when kernel was compiled to execute sanity checks.
Kernel panic appeared at the point of establishing a link
between the IP lookup and NHLFE entry. The old method
of establishing resulted in a stack overflow. A solution was
found in modifying the type of variable that keeps this link
from the structure type to the type of a pointer to the structure.

Secondly, execution of MPLS instructions is accelerated.
It is defined that instructions are allocated in the continuous
memory space. All functions corresponding to the instructions
were optimized and the code is shortened to the maximum
extent for all of them. In course of optimizing instructions, a
special attention was given to use already defined functions
for manipulating the sk buff structure. In Linux, sk buff rep-
resents an abstraction of data packets. All packet operations
are managed in kernel trough this structure.

Then, forwarding of packets to higher and lower layers is
modified to use already existing functions from the network
code. Forwarding of packets to another network layer is
realized in the same way as forwarding of packets from the
IP layer to another network layer. Forwarding of packets to
the IP layer is solved fully in line with the forwarding from
another layer to the IP layer. Thus, the communication with



other network layers was optimized and transfer of code to
the future kernel versions was facilitated.

Simple Network Management Protocol (SNMP) statistics
was added. The statistics has been realized in line with RFC
3813 [15]. It enables the system to follow up the number
of sent, received and rejected MPLS packets. Entire statistics
is written in the /proc/ file system. In our modified MPLS
version, there is a possibility to perform an unlimited number
of MPLS instructions over each packet, while the number of
instructions was limited to 8 in the original version.

Finally, communication over Netlink is modified. Now all
writings/modifications/deletions of data in LFIB, as well as
modifications of label space, are updated in user space. A lot
was done on facilitating the MPLS administration through an
iproute2 programme. The most important change is enabling
modification of already existing entries in LFIB.

IV. PERFORMANCE EVALUATION

The aim of this section is to present achieved performance of
the software router with our MPLS implementation. Section
IV-A describes the methodology of performing experiments
and used equipment. Section IV-B presents the results of
experiments. Section IV-C compares the performance of the
MPLS software router with the performance of the existing
MPLS implementations.

A. Experimental Setup

The router consisted of an ordinary home PC with a M2N68
PLUS ASUS motherboard, AMD Athlon II X2 240 processor
at 2.8GHz, 4GB DDR2 RAM memory at 1066MHz and
with 3 Intel network interface cards (NIC). The fourth NIC
used in experiments was integrated on the motherboard. Intels
NICs used e1000e driver, and integrated NIC used a forcedeth
driver. The PC had an installed OS Ubuntu Server 11.10 with
compiled MPLS Linux kernel.

All the experiments were done for various packet sizes,
ranging from 60B to 1500B. Bidirectional flows were observed
in all tests. This means that the traffic was sent and received
at the same time on all NICs. All four NICs were given a
maximum load of traffic, for all packet sizes. In order to
analyse software router performance in greater detail, daemon
irqbalance [16] was off in all the experiments. CPU affinity
for interrupt requests (IRQ) was set in the files /proc/irq/,
so that one CPU core was used by two NICs. During the
measurements, it was important to note whether NICs, having
exchange of packets, are processed by the same CPU or not.
Thus, two cases were observed. In the first scenario, packets
passing through the router were using NICs served by the same
CPU. In the second scenario, packets were using NICs served
by different CPUs.

Router’s performance was analysed for IP traffic forwarding,
MPLS swap function, combination of MPLS pop and swap
functions, MPLS push function and MPLS PHP. As the IP
module of the Linux kernel code was tested in detail and opti-
mized to the maximum extent, IP forwarding performance was
taken as a benchmark to which we compare the performance of

our MPLS implementation. IP packets were generated and sent
to the router’s NICs in order to test the IP traffic forwarding
through the software router. Such packets would be carried
through the IP module of kernel and were forwarded to an
interface specified in the IP lookup table.

IP packets were generated and sent to the router in order
to test MPLS push function. These packets were mapped to
their MPLS labels which were added to them, and then, they
were forwarded to one of outgoing ports. Packets with MPLS
labels were generated at the ingress, in order to test MPLS
swap function. New labels were calculated and assigned to
those packets. Then, they were forwarded to one of outgoing
ports.

Packets with MPLS labels were generated in order to test
MPLS PHP function too. The packet label was removed and
the packet was then carried based on the entry in the NHLFE
table. A combination of MPLS pop and swap functions was
tested to simulate packet processing in a context-specific label
space [17]. It was tested by generating packets labelled with
two MPLS labels at the ingress. Firstly, the upper label was
removed from the packets and then a swap function would be
recursively performed for the lower label.

Throughputs were directly measured on the software router,
by means of lightweight programmes bmon [18] and mpstat
[19]. In the tests, IP and MPLS lookup tables contained only
routes necessary for the tests. Simulations were made for each
packet size during 30s, while calculating an average value of
the resulting throughput.

B. Results

Fig. 4. and Fig. 5. show the IP and MPLS throughputs when
packets use a single CPU, and when they use both CPUs,
respectively. From these figures, it can be concluded that
there is no significant difference between the speeds of MPLS
and IP traffic forwarding. These results show the excellent

Fig. 4. Packet throughput - each packet uses a single CPU

performance of our MPLS implementation, because the IP
module of Linux kernel was tested in detail and optimized



to the maximum extent. Our implementation is, therefore,
a significant improvement of the original version of MPLS,
which had much worse performance in comparison to the IP
forwarding. Please note that small IP lookup tables were used,
so the IP lookup was not a bottleneck.

Fig. 5. Packet throughput - each packet uses both CPUs

In both cases, the MPLS push function has the worst
performance of all tested methods of packet forwarding. This
was to be expected, since in course of MPLS push function
testing, the packet went through an entire processing of IP
stack to finally reach the MPLS part of the code, where MPLS
push is done.

However, the variation between forwarding of packets for
different MPLS functions is minimal in both cases. This is due
to the fact that MPLS functions, corresponding to different
MPLS instructions, are shortened to the maximum possible
extent so that the speeds of their executions are optimized.

Fig. 6. CPU and port utilization for MPLS swap

As expected, throughput is higher when packets are pro-
cessed only by one CPU. This is due to the fact that additional
processing time is required to carry the packets processed by

one CPU to the other CPU, as can be observed in Fig.6.
Fig. 6. show the port and CPU utilization in the case of

the swap function. When packets pass two CPUs, apart from
having the worse packet forwarding speed, there is an increase
in the use of CPU resources. Also, it is evident that as soon as
the utilization of CPU resources begins to fall below 100%,
packet flow saturates. When it happens, a bottleneck is not any
more the processing power of a CPU but the capacity of NICs.
Since the tests were done with NICs of the average quality, the
maximum throughput does not exceed 90% of their maximum
possible value.

C. Comparison With Existing Implementations

In this section, we will compare the performance of our
implementation with the performance of the original MPLS
implementation in Linux [12] and the performance of the
MPLS Click implementation [14].

For performance evaluation of the original MPLS imple-
mentation in Linux [12], authors used the latest available
MPLS version at the time, written for 2.6.35 Linux kernel.
These tests were performed for only one bidirectional traffic
flow. The comparison is shown in Fig. 7.

Fig. 7. Packet throughput compared with original MPLS version [12]

An improvement achieved by our implementation is clearly
evident. Fig. 7. shows that packet forwarding is about 9
times increased for the forwarding of the largest packets and
approximately 55 times for the smallest packets, in the case
of our MPLS implementation.

Authors of the Click implementation performed testing for
two scenarios. Scenario A presented the case where the traffic
coming to eight 1Gbps ports was forwarded to one 10Gbps
port. In scenario B, the traffic coming to four 1Gbps ports and
to one 10Gbps port, was then forwarded to a 10Gbps port. In
theory a maximum throughput for scenario A is 8Gbps, and
10Gbps for scenario B. Both scenarios are tested for two ways
of IRQs allocation. The first method of IRQs allocation has
all IRQs from NICs processed by one CPU. It is called a no
affinity case. In the second case, IRQs from NICs are allocated
evenly to all CPUs. This case is called a full affinity case. As



the full affinity case showed significantly better results, our
implementation was compared with these results only.

Fig. 8. Packet throughput compared with Click implementation [14]

Fig. 9. Port efficiency compared with Click implementation [14]

Comparing the performances of the Click and our MPLS
implementation (Fig. 8. and Fig. 9.), it can be seen that
our implementation is by far better when CPU is being a
bottleneck for packet processing (Fig. 8.). For the smallest
packets, our implementation has about 1,7 times greater num-
ber of processed packets in a second! Here, it is worth noting
that our test was made on a DualCore processor, while the
Click MPLS test used two Intel Xeon QuadCore processors. It
should be also noted that a recommended price of Intel Xeon
processor, used by authors, exceeds the overall price of our
test engine. When the quantity of processed packets starts to
depend on NICs limit, the Click implementation achieves a
greater throughput, because it used more NICs. However, if
we measure the performance more fairly, by the port efficiency,
our implementation achieves better results for almost all packet
sizes as shown in Fig. 9.

V. CONCLUDING REMARKS

In view of the fact that MPLS protocol is becoming in-
dispensable in the network core, and that software routers
based on Linux OS are in expansion, there is a growing need
for stable implementation of MPLS for Linux. This paper
presents an improved implementation of MPLS for Linux. The
performance analysis showed a significant improvement of our
new version over the original version of MPLS for Linux. Our
implementation can support 9 times greater throughput for
the largest packets, 1500B long, and approximately 55 times
greater throughput for the smallest, 64B long, packets.

Our future work will include additional improvements of
the MPLS implementation. Apart from the work on the
MPLS implementation itself, an implementation of RSVP-TE
protocol as a part of the software router is planned.
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