
Fair Packet Dropping
Aleksandra Smiljanić, Igor Maravić and Luka Milinković

School of Electrical Engineering, Belgrade University,
Belgrade, Serbia

{aleksandra, igorm, lukamilinkovic}@etf.rs

Abstract—Many scheduling algorithms were proposed to pro-
vide fair service of flows passing through a buffer before the
congested link. As we will show, fairness can be provided only
if packets are dropped appropriately, while the fair scheduling
algorithms is applied. We propose a novel algorithm for packet
dropping in which the oldest packet is dropped (OPD). It will be
shown that OPD provides fair service while having the minimal
complexity.

Index Terms—Internet router; packet dropping; scheduling;
QoS;

I. INTRODUCTION

Internet traffic keeps growing because of the increasing
number of users and their bandwidth demands. As a conse-
quence, link bit-rates and router capacities must increase to
accommodate the growing traffic. At the same time, new ap-
plications are being developed, with diverse QoS requirements.
Multimedia applications are getting more and more popular,
and they require more stringent delay requirements than file
transfers that dominated the Internet until recently.

However, bandwidth reservations are not yet implemented
across the Internet on a large scale. Bandwidth reservations
typically require some kind of centralization, which is difficult
to implement in a scalable manner. Another issue is of admin-
istrative nature. Namely, there is a large number of network
operators and internet service providers (ISPs) which have
to agree on the common technology and protocols, in order
to provide end-to-end QoS guarantees. Such an agreement is
difficult to achieve. Internet grew fast thanks to its distributed
nature, and now, it gets hard to coordinate different actors on
the Internet more tightly. Therefore, best-effort (BE) traffic
still dominates the Internet.

On the Internet, users still send their traffic without prior
examination of the available resources, and negotiations with
the network agents. Even multimedia contents are transferred
as the BE traffic most of the time. If some links get congested,
users adjust their rates according to the TCP protocol. But,
TCP itself cannot provide fair allocation of the bandwidth
among the traffic flows that pass through those links, since
users might tweak their TCP codes. In addition, some appli-
cations do not use TCP. Consequently, it was recognized that
routers and switches need to implement appropriate scheduling
algorithms that isolate flows from each other and provide
them the link portions which are roughly proportional to their
weights [1]. Weights are administratively assigned based on
the service level agreements (SLAs). One flow can be assigned
to a particular user, company, ISP and so on.

The large number of fair scheduling algorithms have
been proposed in the literature [2], [3]. These algorithms
achieve different trade-offs between complexity and fairness
level. Typically, the scheduling algorithms that achieve the
higher level of fairness require more complex implementation.
Scheduling algorithms are usually designed to provide max-
min fairness, in which modest flows are entirely served if
they comprise traffic that is smaller than their fair shares,
while other flows share the bandwidth unused by the modest
flows according to their weights. Deficit round-robin (DRR) is
among the most popular max-min fair scheduling algorithms
due to its low complexity, i.e. due to its practical value [4].

Fair scheduling algorithms specify the order in which the
packets are sent through the outgoing link, but they do not
specify how the packets are dropped. These algorithms might
not be sufficient to ensure fair treatment if aggressive flows
fill the buffer and packets of other flows get dropped as a
consequence. Therefore, packets need to be dropped so that
all the flows get fair access to the buffer before the link.

Buffers can be allocated to flows statically or dynamically.
In the case of the static buffer allocation, which is often used
in practice, a fixed slice of a buffer is allocated to each flow.
When a fair algorithm is applied and the traffic of a flow
exceeds its fair share, the buffer slice allocated to this flow
will get full and the packets of the flow will be dropped. Static
buffer allocation ensures fair shares of the link capacity to the
flows, but might lead to an inefficient utilization of the buffer
space. Namely, it may happen that some flows do not use their
slices, which could have been used by aggressive flows. When
the buffer space is allocated to the flows dynamically, flows
can use arbitrary portions of the buffer space depending on
their traffic load. In that case, the buffer is used efficiently,
however, it may happen that aggressive flows monopolize the
buffer space.

Packets can be dropped according to different algorithms.
The simplest possible algorithm is tail drop (TD) in which
packets coming to a full buffer are dropped. This algorithm
is obviously simple to implement, however, it has certain
disadvantages which will be explained in the paper. Random
early detection (RED) algorithm is slightly more complicated.
RED introduces two thresholds. Packets are dropped with
the probability, that depends on the queue length, when their
length is above the lower threshold, and with the probability
equal to 1 when their length is above the higher threshold
[5]. RED algorithm was shown to incur the smaller degree of
synchronization among TCP flows and, therefore, the higher



efficiency. Also, it was shown to handle a bursty traffic more
fairly. But later, advantages of RED were disputed through
different set of scenarios [6].

Fairness also must be supported by the algorithms for packet
dropping [1], [7]–[10]. One way to provide a fair access to the
buffer is by dropping packets from the longest queues (LQD)
as proposed initially in [1]. A variation of LQD was proposed
in [9] where packets are dropped from longest queues with
certain probabilities, only when the total queue length exceeds
a certain threshold, in order to decrease the queuing delay. In
a couple of solutions, the flow rates are measured, and when
they exceed fair shares, the packets are dropped with certain
probabilities [7], [10]. Finally, in [8], packets are dropped
from the queues that exceed their allocated fair shares of
the buffer. Most of the algorithms are complex because they
include frequent calculation of fair shares that depends on the
incoming traffic. Also, mentioned algorithms, except of TD
and LQD, do not utilize the buffer fully.

In this paper, we propose a novel algorithm for packet
dropping. It is very simple and practical. In our proposed
algorithm the oldest packet is dropped when the buffer gets
full. The oldest packet had most chances to be transmitted in
the past according to the specified fair scheduling algorithm,
and as such, it should be dropped. This algorithm will be
named oldest packet drop (OPD). We will compare OPD with
TD and LQD algorithms in terms of fairness, since all three
of them utilize the buffers fully.

II. ALGORITHMS FOR PACKET DROPPING

In this section, we will define precisely TD, LQD and
OPD algorithms, and discuss their complexities. These three
algorithms assume dynamic buffer allocation. This being the
case, queues are implemented by linked lists in which each
packet points to the packet of the same flow that arrived next
after it. Two pointers are associated to each queue pointing
to its starting and ending locations. Empty locations are
organized in a separate linked list which has pointers to its
starting and ending location too. Whenever, a packet arrives
to or departs from some queue, its pointers are updated, as
well as the pointers of the queue with empty locations.

Algorithm 1 Tail Drop
if length(packet to rx) > buffer free space then
drop(packet to rx);

end if

TD algorithm is the simplest possible. When a new packet
arrives, its length is learned from the header. If there is a
sufficient space in the buffer, the packet is stored at the end
of the appropriate queue. Otherwise, the incoming packet is
dropped. Only one variable is needed to store the size of the
empty space in the buffer. It is updated whenever a packet
arrives, or departs the buffer.

LQD is also simple to describe, but it is more complex
for implementation than TD. Similarly, as in TD, the length
of an incoming packet is learned from its header. Then, it is

Algorithm 2 Longest Queue Drop
while length(packet to rx) > buffer free space do
longest queue := get longest queue();
packet to drop := oldest packet(longest queue);
buffer free space :=

buffer free space+ length(packet to drop);
drop(packet to drop);

end while
receive(packet to rx);

determined if this packet can be stored in the buffer. If there is
not enough space for the packet, then the oldest packets from
the longest queue is dropped. It is again checked if there is
enough space for the incoming packet, and if not, the described
procedure is repeated until there is sufficient space to store the
incoming packet. Incoming packet is stored at the end of the
appropriate queue, when enough space becomes available. An
array is needed to store lengths of all queues. It should be
updated and sorted whenever a packet arrives or departs the
buffer. Therefore, the complexity of the algorithm is roughly
O(log2F ), where F is the number of flows.

Algorithm 3 Oldest Packet Drop
while length(packet to rx) > buffer free space do
packet to drop := oldest packet;
buffer free space :=

buffer free space+ length(packet to drop);
drop(packet to drop);

end while
receive(packet to rx);

Finally, in our proposed OPD algorithm, if there is not
sufficient space for an incoming packet in the buffer, the oldest
packet is dropped. If the incoming packet does not fit the buffer
even after the oldest packet is dropped, the next oldest packet
is dropped. This process repeats until the incoming packet
can be stored in the buffer. In order to be able to find quickly
the oldest packet, packets need to be linked according to their
times of arrival as well. So, each packet needs to point not only
to the next packet of the same flow (queue), but also to the
packet that came right before it, and to the packet that arrived
just after it. Two additional pointers point to the oldest and the
newest packets in the buffer. Whenever a packet departs the
buffer, its preceding and succeeding packets need to update
their pointers so that they point to each other. When a packet
arrives to the buffer, only the previous packet needs to update
its pointer, and when the oldest packet departs the buffer or is
dropped, only its succeeding packet needs to update its pointer.
All these pointer manipulations are simple, and the associated
processing does not depend on the number of flows, i.e. the
complexity of OPD is O(1). Also, the memory space needed
for two additional pointers per packet is negligible with respect
to the packet size.

Pseudo codes for TD, LQD and OPD algorithms are shown



in Algorithms 1-3. As we explained, LQD algorithm is
significantly more complex than TD and OPD algorithms.
Complexities of TD and OPD algorithms do not depend on
the number of flows.

III. PERFORMANCE COMPARISON

TD, LQD and OPD algorithms were compared through time
driven simulations of diverse scenarios. In all cases DRR
scheduling algorithm is used [4]. The results of simulations
are shown in Fig. 1-9. Parameters varied in these scenarios
are the number of flows, F , probability of packet generation,
P1, probability that the generated packet will continue in the
next slot, P2, and flow weights, w.

In scenarios 1-3, 5 and 7, there are G = 8 groups with
FG = 16 consecutive flows, and, so, there are F = 128
flows. Other scenarios, 4, 6 and 8, assume F = 1024 flows,
divided into G = 64 groups with FG = 16 consecutive
flows. Probabilities and weights of flows may vary in a group.
Each flow is uniquely identified with variable fID, where
fID ∈ [1, F ]. Flows in different groups, whose identifications
are the same modulo FG, have the same probabilities and
weights. The 3D graphs show for the selected set of flows
the number of generated cells (input traffic), the number of
served cells in the ideal case and in the cases when TD, LQD
and OPD algorithms are applied. The buffer size is B = 16K
cells for all 3D graphics. Here, cell represents the amount of
data transmitted within one time slot of the simulation. The
2D graphs show normalized flow throughputs as buffer size
varies, for all three algorithms. Results are averaged for flows
with the same parameters. Horizontal bars show normalized
flow throughputs in the ideal case.

Scenario 1, shown in Fig. 1, comprises aggressive flows
with the similar generated traffic loads, and different weights.
In scenario 2, shown in Fig. 2, flows have the same weights
and different traffic loads. Flows in these two scenarios have
packets of different lengths, i.e. different P2. In scenarios
3 and 4, shown in Fig. 3 and 4, all flows have the same
weight and packets of equal length, but they have different
traffic loads. These two scenarios differ only in number of
flows. Scenario 3 has been tested for F = 128 flows, while
scenario 4 assumes F = 1024 flows. Scenarios 5 and 6 show
the performance when more aggressive flows have smaller
weights, which can be observed in Fig. 5 and 6. Again, these
two scenarios assume different numbers of flows, F = 128
flows, and F = 1024 flows, respectively. Finally, in scenarios
7 and 8, flows fID mod FG ∈ [5, 8] are modest and generate
traffic loads smaller than their fair shares. We can see in Fig.
7 and 8 that these modest flows get all their traffic through,
which is two times smaller than the capacity obtained by flows
fID mod FG ∈ [1, 4] with the same weights.

In all scenarios, link shares allocated to the flows for the
LQD and OPD algorithms are converging to the ideal case
with the infinite buffer. In the case of the larger number of
flows, F = 1024, OPD converges somewhat slower to the
ideal case than LQD. So, OPD needs larger buffer to ensure
fair bandwidth allocation. For F = 1024, the buffer storing

16K cells, is sufficient for perfect performance of OPD in all
observed scenarios. Cells are typically 64 bytes in switches
and routers, so, OPD has quite small memory requirements
of 1MB to provide excellent fairness. On the other side, the
TD algorithm does not provide fair shares to flows in any
of the cases. This is because TD allows aggressive flows to
monopolize the buffer space, not allowing other flows to access
it. In scenarios 1 and 2, it was observed that flows with shorter
packets gain larger than their fare shares when TD is used,
while packet size does not matter in the case of LQD and
OPD.

Finally, we observed the delay incurred by all three algo-
rithms in scenarios 5 and 7 which are depicted in Fig. 9. TD
provides various delays to different flows, where flows that are
under-served experience smaller delays because their queues
are shorter. On the other side, LQD and OPD algorithms
provide similar delays to all the aggressive flows, and very
small delay to the modest flows in scenario 7.

IV. CONCLUDING REMARKS

In this paper, we examined fairness provided by three
algorithms for packet dropping. It turned out that our proposed
algorithm OPD has the minimal complexity, while providing
fairness. OPD converges to the ideal bandwidth allocation
slower than LQD when the number of flows is large, while
the simplest TD does not provide fairness. But, LQD is not
scalable since its complexity increases with the number of
flows.

ACKNOWLEDGEMENT

This work is funded by the Serbian Ministry of Education
and Science, and companies Informatika and Telekom Srbija.

REFERENCES

[1] A. Demers, S. Keshav, and S. Shenker, ”Analysis and Simulation of a
Fair Queueing Algorithm,” ACM SIGCOMM Computer Communication
Review, Vol. 19, no. 4, 1989.

[2] D. Nace, and M. Pioro, ”Max-min Fairness and its Applications to
Routing and Load-Balancing in Communication Networks: A Tutorial,”
IEEE Communication Surveys and Tutorials, Vol. 10, no. 4, 2008.

[3] T. Bonald, L. Massoulie, A. Proutiere, and J. Virtamo, ”A Queueing
Analysis of Max-Min Fairness, Proportional Fairness, and Balanced
Fairness,” Queueing Systems: Theory and Applications, Vol. 53, no.
1-2, 2006.

[4] M. Shreedhar, and G. Varghese, ”Efficient Fair Queueing Using Deficit
Round Robin,” ACM SIGCOMM Computer Communication Review,
Vol. 25, no. 4, 1995.

[5] S. Floyd and V. Jacobson, ”Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, Vol.
1, no. 4, 1993.

[6] T. Bonald, M. May, and J. C. Bolot, ”Analytic Evaluation of RED
Performance,” Proc. IEEE INFOCOM 2000, Vol. 3, 2000.

[7] G. Aldabbagh, M. Rio, and I. Darwazeh, ”Fair Early Drop: An Active
Queue Management Scheme for the Control of Unresponsive Flows,”
Proc. IEEE 10th ICCIT, 2010.

[8] T. Miyamura, K. Nakagawa, P. Dhananjaya, M. Aoki, and N. Yamanaka,
”Active Queue Control Scheme for Achieving Approximately Fair Band-
width Allocation,” Proc. IEEE ICC, Vol. 2, 2002.

[9] M. Nabeshima, and K. Yata, ”Performance Improvement of Active Queue
Management with Per-flow Scheduling,” IEEE Proc. on Communica-
tions, Vol. 152, no. 6, 2005.

[10] A. Racz, G. Fodor, and Z. Turanyi, ”Weighted Fair Early Packet Discard
at an ATM Switch Output Port,” Proc. IEEE INFOCOM 1999, Vol. 3,
1999.



Fig. 1. Scenario 1: Black lines represent flows a and b, and red lines represent flows c and d.
a mod FG ∈ [1, 4], b mod FG ∈ [5, 8], c mod FG ∈ [9, 12], d mod FG ∈ [13, 16]; FG=16; F=128;
P1(a)=P1(c)=0.009, P1(b)=P1(d)=0.038; P2(a)=P2(c)=0.8, P2(b)=P2(d)=0.1; w(a)=w(b)=2, w(c)=w(d)=1.

Fig. 2. Scenario 2: Dashed lines represent flows a, dotted lines represent flows b, solid lines represent flows c, and dash-dot lines represent flows d.
a mod FG ∈ [1, 4], b mod FG ∈ [5, 8], c mod FG ∈ [9, 12], d mod FG ∈ [13, 16]; FG=16; F=128; P1(a)=0.013, P1(b)=0.056, P1(c)=0.049,
P1(d)=0.021; P2(a)=P2(c)=0.8, P2(b)=P2(d)=0.1; w(a)=w(b)=w(c)=w(d)=1.

Fig. 3. Scenario 3: Dashed lines represent flows a, dotted lines represent flows b, and solid lines represent flows c.
a mod FG ∈ [1, 8], b mod FG ∈ [9, 12], c mod FG ∈ [13, 16]; FG=16; F=128; P1(a)=0.032, P1(b)=0.016,
P1(c)=0.01; P2(a)=P2(b)=P2(c)=0.3; w(a)=w(b)=w(c)=1.



Fig. 4. Scenario 4: Dashed lines represent flows a, dotted lines represent flows b, and solid lines represent flows c.
a mod FG ∈ [1, 8], b mod FG ∈ [9, 12], c mod FG ∈ [13, 16]; FG=16; F=1024; P1(a)=0.004, P1(b)=0.002,
P1(c)=0.00125; P2(a)=P2(b)=P2(c)=0.3; w(a)=w(b)=w(c)=1.

Fig. 5. Scenario 5: Dashed black lines represent flows a, solid red lines represent flows b, and dotted blue lines represent flows c.
a mod FG ∈ [1, 5], b mod FG ∈ [6, 11], c mod FG ∈ [12, 16]; FG=16; F=128; P1(a)=0.01, P1(b)=0.02, P1(c)=0.028;
P2(a)=P2(b)=P2(c)=0.4; w(a)=8, w(b)=4, w(c)=1.

Fig. 6. Scenario 6: Dashed black lines represent flows a, solid red lines represent flows b, and dotted blue lines represent flows c.
a mod FG ∈ [1, 5], b mod FG ∈ [6, 11], c mod FG ∈ [12, 16]; FG=16; F=1024; P1(a)=0.00125, P1(b)=0.0025, P1(c)=0.0035;
P2(a)=P2(b)=P2(c)=0.4; w(a)=8, w(b)=4, w(c)=1.



Fig. 7. Scenario 7: Dashed black lines represent flows a, solid red lines represent flows b, and dotted blue lines represent flows c.
a mod FG ∈ [1, 4], b mod FG ∈ [5, 8], c mod FG ∈ [9, 16]; FG=16; F=128; P1(a)=0.025, P1(b)=0.005, P1(c)=0.018;
P2(a)=P2(b)=P2(c)=0.4; w(a)=8, w(b)=4, w(c)=1.

Fig. 8. Scenario 8: Dashed black lines represent flows a, solid red lines represent flows b, and dotted blue lines represent flows c.
a mod FG ∈ [1, 4], b mod FG ∈ [5, 8], c mod FG ∈ [9, 16]; FG=16; F=1024; P1(a)=0.003125, P1(b)=0.000625, P1(c)=0.00225;
P2(a)=P2(b)=P2(c)=0.4; w(a)=8, w(b)=4, w(c)=1.

(a) Delays for scenario 5 (b) Delays for scenario 7

Fig. 9. Dashed black lines represent flows a, solid red lines represent flows b, and dotted blue lines represent flows c. For Fig. 9a flows a, b and c are
defined in Fig. 5. For Fig. 9b flows a, b and c are defined in Fig. 7.


