
Design of the Multicast Controller for the
High-Capacity Internet Router

Miloš Blagojević1, Aleksandra Smiljanić1,2, Miloš Petrović1

1Belgrade University, Belgrade, Serbia
2Stony Brook University, New York, USA

milosdb@etf.bg.ac.yu, aleks@ieee.org, pmilos@ieee.org

Abstract—High-capacity routers that circulate multicast pack-
ets have unique properties. Their architecture is non-blocking
even for the multicast traffic. It also provides delay guarantees.
This paper presents the detailed implementation of the controller
that circulates multicast packets through a router toward their
destination ports. The controller was implemented on the FPGA
device and its functioning was tested. Its scalability and speed
were assessed, and shown to be satisfactory.

I. INTRODUCTION

Multicasting has been recognized as a problem in high-
capacity Internet routers [3], [6], [7], [13], [14], [15]. In
this paper we consider multicast traffic that has one source
and multiple destinations. A single-hop high-capacity router
is typically based on input buffers and a cross-bar [4], [8],
[12]. Packets are split into cells. In each time slot, the cross-
bar is configured so that each input is connected to at most
one output, and each output is connected to at most one input.
Alternatively, the cross-bar might have a multicast capability
meaning that one input might simultaneously send packets to
multiple outputs. In both cases, scheduling of multicast packets
is problematic. In the case of purely unicast cross-bar, an input
has to replicate each multicast packet, and send it separately to
all output ports. If the input sources many popular sessions, it
might become clogged easily. This is because the input might
have to send packets of a popular session to as many as N
ports. In the case of the multicast cross-bar, a dilemma arises.
Should a multicast packet be sent to the outputs when all
of them are free for reception, or should it be sent only to
the available outputs? In the first case, the packet might wait
unacceptably long; in the second case (that allows so called
fan-out splitting), the packet might again be replicated and
sent to all outputs separately. In [6], a discouraging result
was reported. Even if the optimal scheduling algorithm is
applied to the router based on the multicast cross-bar, the
speedup required to pass an admissible traffic increases with
the number of router ports. An admissible traffic is the one
that does not overload output router ports.

In [9], the multicast solution implemented in the Cisco
Gigabit Switched Router (GSR) was also presented. In GSR,
there are two types of queues: VOQs for storing unicast cells,
and a separate multicast queue for multicast cells. The cross-
bar has multicast capability, so each multicast cell may be
sent to multiple outputs within one time slot. Cells are served
according to the eSLIP algorithm. Multicast cells have priority.

In some time slot, a multicast cell is transmitted only to the
outputs which it won in a contest. Generally, a multicast cell
will be sent to all outputs within multiple time slots. There
are many concerns about this approach. Since multicast cells
are stored in FIFO queues, well known head-of-line blocking
might occur. Also, in the worst case, one cell could be sent to
only one output in each time slot, and again the transmitting
port would become clogged. The properties of this approach
are not analitically proven, and therefore its performance for
general traffic pattern is uncertain.

On the other hand, the high-capacity router could handle
the multicast traffic well when the packet circulation through
a unicast fabric is utilized [13], [14], [15]. Let us say that all
ports receiving the packets of a multicast session belong to
the multicast set corresponding to that session. Let us assume
that the input port sends the packets only to a limited number
of ports in the multicast set. Each of those ports forwards the
packets to a limited number of ports in the multicast set that
did not receive them yet, and so on. This procedure continues
until all the outputs in the multicast set receive the packets in
question. In this way, the transmission load of the input port
is spread over all the ports in the multicast set. The speedup
required to pass an admissible traffic depends on the number
of ports to which each port forwards multicast packets that it
receives, i.e. P . It was proven that all the admissible multicast
traffic patterns may pass the cross-bar with the speedup of
P + 2 if the maximal matching algorithm is used for packet
scheduling [13], [14]. Here, the maximal matching algorithm
is the one that does not leave an input-output pair unmatched
if there is a packet from the input to the output in question [1].
One scalable maximal matching algorithm that could be used
is the sequential greedy scheduling (SGS) [12]. Not only that
the throughput could be guaranteed through this architecture,
but also the packet delay. Let us assume that all sessions
passing the router police their traffic, sending less than the
negotiated amount of data within each policing interval of
duration D. Then, packets of each session are guaranteed the
delay below D · �logP N�, where N is the number of ports
and P ≥ 2 [13], [14]. This delay is acceptable for P ≥ 2,
since the packet does not pass through a large number of core
routers.

A high-capacity router, which circulates multicast packets
as described, is non-blocking even for the multicast traffic.
Regardless of the traffic pattern, and popularity of various

multicast sessions, all the traffic will pass the router as long
as the outputs are not overloaded. In addition, the delay is
guaranteed to the sessions through the router. In this paper, we
present the implementation of the router controller that per-
forms the multicast packet circulation. This controller builds
and maintains the router internal trees according to which the
packets will be forwarded. In Section 2, we describe the im-
plemented protocol which builds and maintains trees. Section
3 presents the testing environment in which the functioning of
the implemented controller has been verified. In Section 4, the
performance of the FPGA design is analyzed in terms of its
speed and scalability. Resources that the design consumes have
been calculated in this section, and the design parameters have
been determined based on the calculated formulas. Finally,
timing analysis has been performed for the chosen parameters.

II. THE MULTICAST CONTROLLER IMPLEMENTATION

In this section, we will present implementation of the mul-
ticast control protocol for high capacity routers [13]. Multicast
packets are forwarded through the router according to the
tree comprising the ports that receive packets of the multicast
session in question. Implemented protocol maintains the tree
structure, adding new ports to the tree or removing existing
ports from the tree. In response to changes in the multicast
group membership, the ports exchange control messages and
update the forwarding tree accordingly. The tree is updated
so that it is always the shallowest, thus providing the lowest
possible delay. This is achieved by adding a new port at the
end of the tree shortest path, and replacing a port on leave
with the port at the end of the tree’s longest path.

In our scheme, a tree is associated with each multicast
session. This tree comprises nodes that correspond to the
ports of the multicast set. Those ports receive the packets of
the session in question. Multicast traffic arrives at the root
port and it is further circulated through the router according
to corresponding multicast tree. Each port in the tree sends
the multicast packet to its children ports in the tree. As it
was previously shown [13], the forwarding fanout of P = 2
provides satisfactory delay through the router. This fanout
value was used in our implementation, meaning that each port
forwards the multicast packets to at most two ports in the
multicast set. For each multicast session passing the router,
the higher-layer protocols determine the multicast set of ports,
and the root port. The internal router controller that we are
implementing receives the requestsfor adding and removing
ports of the multicast set from the higher-layer protocols such
as SM-PIM. Based on these requests, our protocol generates
the internal control messages that are exchanged between the
router ports in order to update the multicast forwarding tree.

Multicast sessions are defined by their IP multicast ad-
dresses. Each multicast session has the local session identifier
- SID. The SID is associated with the port, and it is actually the
memory address of the location where the multicast session
information is placed. This tree memory entry stores the
information about the parent (previous) node in the tree, the
children (next) nodes in the tree, and the branch fanouts. The

branch fanout represents the number of nodes that could be
reached through that branch. There is no need to perform the
lookup based on the long IP multicast address at each node
during the message journey through the tree. Instead, each
node keeps the information about the SIDs of its parent and
children nodes in the tree memory, and replace its own SID in
the control message destination field with the SID of the next
port to which the message is forwarded. In Figure 1, the format
of the tree memory entry is shown, where F right and F left
denote fanout values and ID is port identification number(from
1 to N). The tree memory of one port comprises one entry for
each multicast session whose packets it forwards.

Parent Child left Child rightF_leftF_right SID | ID SID | ID SID | ID

Fig. 1. Tree memory entry

To keep the tree memories updated when the corresponding
multicast set changes, the ports exchange internal control
messages through the cross-bar. There are eight different types
of internal control messages:

1. Allocate memory for a new port
2. Find where to add the new port and add it
3. Find a replacement port for the port on leave
4. Send the multicast entry to the replacement port and

release memory
5. Change child of the replacement port
6. Change parent
7. Change child of the parent of the leaving port
8. Forward data packet to the children ports

Processing of data packets is beyond the scope of this paper,
and so handling of the messages of type 8 was not imple-
mented. All messages have the same length and the similar
structure. As it can be seen from Figure 2, the internal control
message consists of a field denoting the message type, two
fields related to the destination port, denoting its SID and ID,
two fields related to the port which processes the message,
also denoting its SID and ID, and one additional field with
the information that needs to be exchanged when a port is
leaving the tree.

Destination Port SID Des. port IDType Port IDPort SID
Remove message

info

Fig. 2. Local control message format

When the request for adding a port to the given multicast
set arrives to the router, the higher layer-control protocol
processes it, generates the local control message of type 1
and sends that message to the port which should be added.
This message contains information about the router session
ID, RSID=[root port ID, root port SID], for the corresponding
multicast session, so that the new port can find the appropriate
tree based on this information. The destination port SID is
omitted from this message type, because that information is
not available until the tree memory entry is allocated for this

multicast session at this port. The next available memory
location is assigned to the new tree entry. The address of
the assigned memory location represents the local multicast
session identifier (SID) for that port. The next step is to find
a place in the corresponding tree where the new port will be
added. The port to be added generates the message of type
2, and sends it to the root port. From there, the message is
forwarded through the tree, choosing a branch with the smaller
branch fanout number at each port. If fanouts have the same
value, the message will be forwarded through the left child
port. Fanouts of the branches on the control message path are
incremented by 1. When a port with the branch fanout equal
to zero (the port without at least one child), is reached, the
search is over and the new port is added as a child of this
port.

Removing the port from specific multicast set involves
more intensive message exchange. As before, a request for
removing certain port will be first processed by the higher-
layer control protocol, the message of type 3 will be generated
and sent to the root port. First, a replacement port needs
to be found. This port will replace within the tree the port
that has to be removed. In order to find the replacement
node, the control message is forwarded through the tree to
the most distant port from the root. Forwarding rule is the
opposite from before, this time a port will always forward
the message through a branch with the higher fanout value.
If the fanouts have the same values, the right child will be
selected. Fanouts of the branches on the control message
path are decremented by 1. Forwarding is stopped when the
childless port is reached. That port is the replacement port
and it needs to update its local tree memory entry, so that it
reflects its new position in the tree (position of the leaving
port). So, the replacement port generates the message of type
4, and requests the corresponding tree memory entry from
the leaving port. The replacement port does not know the
multicast SID value of the port on leave. For this reason,
RSID is included in message of type 4. So, when the leaving
port receives this type of message, it can perform the lookup
and find its SID corresponding to the given RSID. Based on
the obtained SID, the requested tree memory entry is found
and sent to the replacement port. Three messages are used
for sending the requested data. The first two messages are of
type 5 (one for left and other for right child) which carries
the child information (ID, SID and the branch fanout), while
the third one is the message of type 6 which carries the parent
information (ID and SID). When all requested data is sent,
the leaving node should release this multicast tree memory
entry. After receiving all requested information (two type 5
and one type 6 messages), the replacement port modifies
the corresponding tree memory entry. In the last step, the
replacement port announces itself to the new neighbours (its
new parent and children ports). So, the replacement port send
to its new children ports the messages of type 6 with the
request to change the parent, and to its new parent port the
message of type 7, with the request to replace the child port
specified in the message. When these messages are received,

the neighbouring ports update their tree memory entries with
the new parent, and the child port, respectively.

III. TESTING OF THE IMPLEMENTED MULTICAST

CONTROLLER

The functional verification requires a complete controller
environment including the cross-bar and the cross-bar sched-
uler, as shown in Figure 3. The functioning of the higher-layer
control protocols was emulated by the central processor (CP).
Implemented multicast control module has to have two FIFO
buffers, one at the input and other at the output, so it can
handle situations when multiple control messages arrive, or
have to be sent from controller module, at same time slot.
Complete testing environment and multicast control modules
are implemented together on the Altera FPGA. Testing is per-
formed through timing simulations using Quartus II software.

CP

M
U
X

M
U
X

M
U
X

Multicast
control 1

Multicast
control 2

Multicast
control N

C
R
O
S
S
-
B
A
R

.

.

.

.

.

.

.

.

.

SGS
module 2

SGS
module 1

SGS
module N

Fig. 3. Block scheme of complete test design

The multicast controller of the 8x8 router was implemented
on a single FPGA chip (Figure 3). Eight multicast control
modules are connected to the scheduler modules and the
cross-bar. The multicast control module receives the control
messages, processes them, updates the tree memory accord-
ingly and generates new control messages that it sends to
other control modules. The scheduler determines the cross-
bar configuration in each time slot based on the information
about the outstanding control messages and their destinations.
The scheduler configures the cross-bar according to the se-
quential greedy scheduling (SGS) algorithm [10], [11], [12].
In SGS, inputs sequentially one after another choose outputs
to which they will be connected. SGS is a scalable maximal
matching algorithm. Internal control packets generated by the
multicast control modules are stored in the memory of the
scheduler modules. Then, these control packets are scheduled
for transmission through the cross-bar according to the SGS
algorithm.

Requests for adding or removing of certain ports came to
the central processor (CP) which transforms those requests
to the proper internal control message formats. Regardless

of the request type, RSID has to be obtained from CP for
further request processing. RSID is used because it uniquely
defines each multicast session that passes the router, but it
is shorter than the IP multicast address. Consequently, using
RSIDs instead of multicast IP addresses within the router
reduces the amount of the exchanged control information, and
the size of the port lookup tables that find SIDs for the given
multicast sessions.

Each multicast control module (Figure 4) can get requests
from two sources: from the higher-layer control protocols
(i.e. the CP block) and from other multicast control modules
through the cross-bar. This means that one module can receive
two control messages in the same time slot. These requests are
stored in a FIFO buffer and handed to the controller module
through a multiplexer. Also, a FIFO buffer is necessary at
the controller output because each module can generate up
to three messages in one time slot. Beside the input and the
output FIFO memories, the multicast control module has two
additional memories: the tree memory and the lookup memory
(which translates the RSID address to the local SID, as already
described).

 Input FIFO
controller

Output FIFO
controller

Tree memory
controller

Message
processing

Tree memory

Output control
message

FIFO FIFO

Input control
message

Local lookup
memory

Fig. 4. The multicast control module (with implemented memories)

Described design was implemented on the Altera FPGA.
The software for testing the given design was developed
similarly as in [11]. Quartus II software uses the waveform file
(with the extension .wvf) as the input file for the simulation
tool. All information about input signals is stored in this file
using simple description programming language. Our software
generates random sequence of request messages, and translates
that sequence to the waveform file data. Created waveform
file is used as the input stimuli vector. In the presented
implementation, information about created tree structures is
not available at the output pins, but it is contained in the
implemented memory. Information about the memory content
is placed in the memory information file (with the extension
.mif). Assuming generated requests (to add or remove certain
ports), the expected simulation results were found. After the
simulation is completed, the data stored in the .mif file is
compared with the expected simulation outcome in order to
verify correct functioning of implemented design.

The testing environment including the multicast controller
for the 8x8 router shown in Figure 3 was implemented on the
Cyclone II EP2C70F896C6 device. In the tested scenarios, the
number of multicast sessions (trees) that can pass the router

was assumed to be up to Ns = 40. Probability that some
request will arrive at certain time instance was assumed to be
pr = 0.5. The type of the request (add/remove), the port ID
in the request and its multicast session are chosen according
uniform distributions (events have equal probabilities of 0.5
and 1/N and 1/Ns respectively). Around 50 simulations were
performed. Duration of each simulation was 350 time slots.
Different random sequences of requests were generated and
correct functioning of the implemented design was verified
for each of them.

IV. PERFORMANCE ANALYSIS OF THE MULTICAST

CONTROLLER DESIGN

Performance of the implemented multicast control module
can be measured by its speed (processing time) and scalability.
Particular performance measures that will be used are: the
minimum time slot duration, the maximal number of input
modules that can fit one device and the maximal number
of multicast session per port. The required chip resources
are calculated in terms of the design parameters. From those
formulas and the chip available resources, the feasible design
parameters are found. Limiting resources might be either the
number of available logic elements (LEs), the number of pins,
or the number of available memory blocks (M4K) on the
Altera FPGA chip [2], [5]. New testing environment has been
created for the chosen parameters, and the timing simulation
has been performed.

After we verified that our design works properly, the next
step is to perform more detailed timing analysis and estimate
the processing speed for the multicast controllers of the routers
of various sizes. Timing analysis was performed for different
number of test modules implemented on the selected FPGA
device. Each test module consists of the multicast control
module and adjoining scheduler module. In the timing analy-
sis, the cross-bar was removed from the design, because it is
typically on a separate chip in the high-capacity routers. Also,
the local lookup memories of the multicast control modules
were reduced, because they should be implemented on the
external memories. Because, the multicast control module and
the SGS control module are associated with the router port,
it is natural to join them into a single port control module.
So, the analyzed design comprises both multicast and SGS
control modules. Assuming different numbers of ports, N , and
numbers of test modules per chip, Np, the maximal number
of the multicast sessions per port, Ns, was calculated and the
appropriate timing analysis was performed.

The number of the available pins possibly limits the number
of test modules that can fit one chip. The number of necessary
pins depends on the number of ports, the number of modules
per chip and the message length. At the input side each test
module has to reserve pins for the incoming control message
(L bits wide), one request notification bit, and (L+log2 N+1)
pins for the CP block control input (comprising the control
message and its destination port). At the output it needs pins
for the scheduled control message (L bits wide) and the cross-
bar configuration message (log2 N+1 wide). In addition, N

pins are required for the SGS control message [10], and 5
pins are required for clock, reset and initialization signals.
Total number of necessary pins for testing design with Np

modules per chip, can be obtained as:

Npin(N, Np, Ns) = (2Np + 1) · L+
+(Np + 1) · (log2 N + 1)+
+N + Np + 5.

(1)

From Figure 2 the message length can be calculated as:

L = �log2 Ntype� + 2 · �log2 Ns� + 3 · (�log2 N� + 1), (2)

where Ntype denotes the number of different message types,
in our case Ntype = 8.

Another limiting factor might be the number of M4K blocks
on Altera’s FPGA required for the implementation of all
memories. The multicast control module consists of two FIFO
memories, simplified lookup memory and the tree memory,
while the SGS module includes one linked list memory, three
memories for pointers, one output memory and one memory
for storing the queued control messages. Most of the M4K
blocks are used for the tree memory and the memory with
control messages, while all other implemented memories do
not contribute significantly to the total number of used M4K
blocks. The tree memory should be large enough to place one
entry for each multicast session passing that port. Formula for
the number of M4K blocks that the SGS module consumes
was calculated in [10]. The number of blocks required for
the memory with control messages should be added to this
formula.

All memories are implemented using the Cyclone II em-
bedded memory structure. That memory consists of columns
of the M4K memory blocks that can be configured to provide
various memory functions such as RAM, FIFO and ROM.
We could not find in the Altera’s documentation the formula
for the number of M4K blocks required by the given design.
Calculation of this formula was intricate. Based on various
cases, we derived a general formula for the number of required
M4K blocks in terms of the number of memory entries, N a,
and the single entry width, Nw. According to [2], the content
of each M4K blocks can be arranged in NxxNy structure,
where allowed configurations are: 4Kx1, 2Kx2, 1Kx4, 512x8,
256x16, 128x32 (with the total of 4096 bits), and 512x9,
256x18, and 128x36 (with the total of 4608 bits). Quartus fitter
configures M4K blocks according to the requested memory
dimensions. For storing Na entries where each entry is Nw bits
wide, the M4K configuration is determined by the requested
address space, while the entry width, Nw, affects the number
of used M4K block. So, if Na ≤ 128 then Nx = 128.Also, it
should be noticed that for 128 ≤ Na ≤ 512 the M4K blocks
of up to 4608 bits are used, while for 512 < Na ≤ 4096 only
the 4096 bits large M4K blocks are used. If Na > 4096, the
4Kx1 M4K blocks are used, and some additional logic has to
be implemented in order to provide the unique address space
of the requested size. Based on these observations, the number
of used M4K blocks (Nm) can be calculated as:

Nm(Na, Nw) = �Nw/K(Na)�, (3)

where function K(Na) is given by:

K(Na) =

36, Na ≤ 128

4608
2�log2 Na� , 128 < Na ≤ 512

4096
2�log2 Na� , 512 < Na ≤ 4096

�4096/Na�, 4096 < Na

(4)

In order to obtain the total number of used M4K blocks,
we will, first, calculate the number M4K blocks used for each
implemented memory structure. Most of M4K blocks are used
for the tree memory implementation. According to equation
(3), the number of M4K blocks required by the tree memory is
Mtree = Nm(Ns, Mw), where Mw is the number of memory
bits used for one entry in the tree memory shown in Figure 1.
From this figure, Mw can be calculated as:

Mw = 3 · �log2 N� + 3 · �log2 Ns� + 2 · �log2 NF �, (5)

where NF is the largest branch fanout value, in our case NF =
N/2. Nm(F, L) is the number of M4K memory blocks used
for implementation of the memory with control messages. That
memory should be large enough to store F control messages,
where F represents the number of cells per policing interval
[10], [12], [13]. In our implementation F = 8N . The number
of the M4K blocks required for the SGS implementation was
calculated in [10] to be:

mem(N, F) = �F �log2 F�/4096�+ 4. (6)

The lookup memory was implemented so that it can fit a single
M4K block. Each of two FIFO memories can store up to
128 messages. The input FIFO memory stores only internal
control messages (L bits wide), while the output FIFO stores
internal control messages and destination IDs for the cross-bar
configuration (L + log2 N + 1 bits wide). So, the numbers of
used M4K blocks for the FIFO memories are Nm(128, L) and
Nm(128, L + log2 N + 1), respectively. From previous , the
total number of used M4K modules can be obtained as:

NM4K(N, Np, Ns) = Np · [Nm(Ns, Mw)
+Nm(128, L + log2 N + 1)
+Nm(128, L) + Nm(F, L)
+mem(N, F) + 1].

(7)

Our design was implemented on the Cyclone II device
which has 250 M4K memory blocks and 622 general-purpose
I/O pins. For the specified switch dimension N and the number
of modules per chip Np, the maximal number of sessions
passing one module Nsm should satisfy:

NM4K(N, Np, Ns) ≤ 250,
Npins(N, Np, Ns) ≤ 622,
Ns = 2k, k ∈ N

(8)

For specified N and Np, and calculated maximal Ns, the
design parameters were determined (all memory dimensions,
input and output signal sizes) and the design was implemented.
Results of the timing analysis for the implemented design are

presented in the table I. Column ”lim” presents the limiting
factors for the number of sessions per module. The number of
pins or the number of memory blocks might be the limiting
factor, depending on the inequality that is the first one reached
in (8). The utilization of logical elements remains below
25% for all tested parameters. So, for the selected device,
the number of logic elements is not a limiting factor. Low
utilization of the chip logic contributes to the satisfactory
design speed. Implemented multicast control module assumes

TABLE I
RESOURCE UTILIZATION AND TIMING CHARACTERISTICS

N NP NS LM pins LE lim TMIN

[M4K] [kbits] [ns]
1 8192 126 133 2.0 M4K 54.34
2 4096 128 202 3.4 M4K 50.98

8 4 2048 144 334 6.6 M4K 54.15
8 1024 168 584 12.6 Pins 52.39
1 8192 136 149 2.1 M4K 53.05

16 2 4096 142 223 3.7 M4K 52.58
4 2048 152 365 7.0 M4K 54.84
8 512 120 601 12.7 Pins 53.57
1 8192 147 173 2.3 M4K 52.85

32 2 4096 154 253 4.1 M4K 53.81
4 2048 176 404 8.0 M4K 53.62
8 128 96 591 13.4 Pins 55.76
1 8192 159 213 2.6 M4K 56.71

64 2 4096 168 297 4.8 M4K 55.92
4 2048 192 459 9.3 M4K 57.03
8 16 104 565 14.4 Pins 55.76
1 8192 178 213 3.1 M4K 54.20

128 2 4096 194 297 5.9 M4K 56.39
4 2048 236 492 10.8 M4K 55.66

multiple memory access operations (read data from the tree
memory, process those data, and based on the obtained result
write new data to the tree memory). Design was implemented
so that those operations are performed efficiently during six
cycles of the cell time slot. Six clock cycles were suitable
because the SGS module uses similar timing structure, where
six memory operations are implemented in one timeslot, too.
So, the minimal time slot duration is obtained from the
maximal achieved clock frequency fMAX as TS = 6/fMAX .
Maximal value for TS in performed simulations was 57.03ns
as it can be seen from table I. Since the delay through the
router is less than D log2 N = FTS log2 N = 8NTS log2 N ,
the proposed design provides a tolerable delay to the sensitive
applications.

V. CONCLUSION

In this paper, we presented the design of a multicast
controller for a high-capacity non-blocking router. Regardless
of the multicast traffic pattern, all the traffic will pass the
router as long as the outputs are not overloaded. Implemented
controller builds and maintains internal trees within the router
for each multicast session. Multicast packets of the sessions
are forwarded according to the appropriate trees. Each tree is
kept shallowest by the implemented protocol.

Implemented controller is distributed. Each port stores the
limited local information about the tree corresponding to
each multicast session whose packets this port receives. Each

port has the multicast control module, which receives the
control messages, updates its tree memory according to these
messages, and generates the control messages for the next port
down the tree in question. For testing purposes, a complete
control path within the 8x8 router has been implemented
including the multicast controller, scheduler, and the cross-bar
through which the control messages are exchanged. Testing
has given a satisfactory result: the multicast controller has been
shown to correctly build and maintain the trees.

After the functional verification, the performance of the
multicast controller has been examined. Control modules
have been implemented on the Altera Cyclone II FPGA.
It has been examined how many multicast sessions can
be served by a module, if different numbers and sizes of
modules are assumed. It was shown that whenever the
number of control modules is four or less, the number of
supported multicast sessions per module is more than 2000.
We find such scalability satisfactory. Also, the processing
time of the multicast controller is less than 57ns, and would
incur the delay which is tolerable by the sensitive applications.

Acknowledgement: We thank to Vlada Petrović and Marija
Antić for their help.

REFERENCES

[1] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-
speed switch scheduling for local-area networks,” ACM Transactions on
Computer Systems, vol. 11, no. 4, November 1993, pp. 319-352.

[2] Altera Corporation, ”Cyclone II Device Handbook Volume 1,”
http://www.altera.com/

[3] A. Bianco, P. Giaccone, C. Piglione, S. Sessa, ”Practical algorithms for
multicast support in input-queued switches,” Proceedings of the HPSR
2006, Poznan, Poland, June 2006.

[4] H. J. Chao, ”Saturn: A terabit packet switch using dual round-robin, ”
IEEE Communications Magazine, vol. 38, no.12, December 2000, pp.
78-84.

[5] P. Leventis, et al., ”CycloneTM : A low-cost, high-performance FPGA,”
Proceedings of the IEEE CICC 2003, September 2003, pp. 49-52.

[6] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, F. Neri, ”Optimal
multicast scheduling in input-queued switches,” Proceedings of the IEEE
ICC 2001, Helsinki, Finland, June 2001.

[7] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, F. Neri, ”Multicast
traffic in input-queued switches: Optimal scheduling and maximum
throughput,” IEEE/ACM Transactions on Networking, Vol.3, No.11,
pp.465-477, June 2003.

[8] N. McKeown, ”The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, April 1999,
pp. 188-200.

[9] N. McKeown, ”Fast Switched Backplane for a Gigabit Switched Router,”
white paper, Cisco Systems, San Jose, Calif., 1997.

[10] M. Petrović, A. Smiljanić, ”Design of the Scheduler for the High-
Capacity Non-Blocking Packet Switch,” Proceedings of the IEEE HPSR
2006, Poznan, Poland, June 2006.

[11] M. Petrović, M. Blagojević, V. Joković, A. Smiljanić, ”Design, imple-
mentation, and testing of the controller for the terabit packet switch,”
Proceedings of the IEEE ICCCAS 2006, Guilin, PR China, June 2006.

[12] A. Smiljanić, ”Flexible bandwidth allocation in high-capacity packet
switches,” IEEE/ACM Transactions on Networking, April 2002, pp. 287-
293.

[13] A. Smiljanić, ”Scheduling of multicast traffic in high-capacity packet
switches,” IEEE Communication Magazine (Best Paper Award in IE-
ICE/IEEE HPSR 2002), November 2002, pp. 72-77.

[14] A. Smiljanić, “Flexible multicasting in high-capacity packet switches,”
IEEE Communication Letters, August 2002, pp. 349-351.

[15] J. S. Turner, ”An optimal nonblocking multicast virtual circuit switch,”
Proceedings of INFOCOM 1994, vol. 1, pp. 298-305.

