
Scalable Lookup Algorithms for IPv6

Aleksandra Smiljanića*, Zoran Čičaa

a School of Electrical Engineering, Belgrade University, Bul. Kralja Aleksandra 73, 11120 Belgrade, Serbia

ABSTRACT

IPv4 addresses have been exhausted, and the Internet is moving to IPv6. The large number of IP lookup
algorithms has been proposed in the past. In this paper we analyze their scalability, and applicability to
IPv6. In particular, we calculate the memory requirements of diverse lookup algorithms, and compare them
for different lookup table sizes, assuming the high lookup throughput of one lookup per memory access.
BPFL (Balanced Parallelized Frugal Lookup) algorithm requires the smallest external and internal
memories for the examined IPv6 lookup tables. In BPFL, the lookup table is defined using the range
selector, balanced trees, and bitmaps. Lookup algorithms based on hashing and TCAMs also use memory
frugally.

Keywords: address lookup algorithms; IP packet forwarding; Internet router; lookup tables.

1. Introduction

Internet is growing in terms of the number of devices connected, and their speeds. The IP lookup is one of
the most challenging tasks of scalable Internet routers. At very high speeds, routers should determine the
output port (i.e. the next-hop information) for each incoming packet based on its global IP address.

The number of networked mobile devices is rapidly growing. Also, it is foreseen that the increasing number
of appliances will be networked for the remote control. At the same time, IPv4 addresses have been
exhausted. Therefore, migration of IPv4 to IPv6 is both the reality, and the necessity. This has been
confirmed by the IPv6 Day, 18. June 2011, when major Internet service providers and web sites
demonstrated a global scale IPv6 trial. Still, IPv6 lookup tables are small counting a couple of thousands
entries, while IPv4 lookup tables count more than 300K entries. It is important to explore if the existing IP
lookup algorithms are capable to support the large IPv6 lookup tables which are inevitable in the near
future, and, if needed, to propose new scalable solutions.

In this paper, we will give an overview of the principles and techniques that were used for designing a large
number of IP lookup algorithms [1-31]. We will focus on their scalability and applicability to IPv6. The
lookup algorithms should support large lookup tables with IPv6 addresses which are 4 times longer than
IPv4 addresses, and, at the same time, they are supposed to achieve high speeds. Namely, the port bit
rates are high with the tendency of growing, while the packets are short. The large portion of the packets
on the Internet is as short as 64B, and their duration is 50ns at 10Gb/s, or 12ns at 40Gb/s. So, within these
rather short times, it has to be decided where the packet should be routed based on 128bits of its IPv6
address. It is a formidable task, hard to achieve. Fortunately, the latency of the IP lookup is not as
important as the lookup throughput, i.e. the number of lookups that can be performed per second. A
straightforward way to increase the lookup throughput is by parallelization. Parallelization by rule implies
multiple memories. If these memories ought to be on the external chips, the printed circuit boards (PCB)
become complex. Desirably, multiple memories should be stored on chip together with the logic, in order to
keep the PCB design simple.

*
 Corresponding author. Tel. +381 64 370 9539

E-mail addresses: aleksandra@etf.rs (A.Smiljanić), zoran.cica@etf.rs (Z. Čiča)

Memory required for the IP lookup tables has been a critical hardware resource. The lookup algorithms
with the smaller memory requirements are, consequently, more scalable. For this reason, our focus will be
on the memory requirements of different lookup algorithms. We will analyze their on-chip memory
requirements as well, because the required on-chip memory size determines the level of parallelization that
can be achieved by some lookup algorithm. We will examine and compare a large number of lookup
algorithms which combine a variety of techniques. The IP lookup algorithms can be divided into three main
categories: algorithms based on m-ary trees [1-20], algorithms based on hashing [21-24] and TCAM
algorithms [25-31]. Representatives of these three categories will be examined. In addition, our proposed
BPFL (Balanced Parallelized Frugal Lookup) algorithm [1-2] will be compared with the previous solutions.

This paper is organized as follows. In Section 2, we will describe different types of lookup algorithms, as
well as the techniques which are the building blocks of these algorithms. Formulas for the memory
requirements are derived for eight representative lookup algorithms in Section 3. In Section 4, the lookup
algorithms are compared in the case of real IPv4 lookup tables, and extrapolated IPv6 lookup tables, in
terms of their speed and memory requirements. The complexity of updating will be also discussed. Finally,
in Section 5, implementation of BPFL will be presented since it will be shown to have the lowest memory
requirements in the case of IPv6. Section 6 concludes the paper.

2. Promising Lookup Algorithms

2.1 Lookup Algorithms based on m-ary Trees

Lookup algorithms based on unibit or multibit trees were widely explored in the literature [1-20]. Unibit, or
binary, trees comprise nodes that carry the next-hop information and/or the pointers to the child nodes [15].
In each step of the tree traversal, the next child is determined by the appropriate bit of the IP address for
which the next-hop information is searched. The lookup tables based on binary trees consume less
memory than the straightforward lookup tables storing 2Lmax entries for all possible prefixes, where Lmax is
the maximum prefix length i.e. the IP address length. However, their memory requirements are not
minimal, and can be optimized in various ways. Also, the simplest lookup algorithm is slow since it requires
Lmax memory accesses in the worst case. Path compression can help reduction of the memory
requirements, and the speed increase [13, 15]. It stands for the removal of one-way branch nodes of a tree
since no decision is made in those nodes. However, improvements provided by the path compression are
limited, and the worst-case performance remains the same. Another popular technique for the memory
saving is leaf pushing [16], in which the next-hop information is pushed to the leaves. In this way, the node
size is reduced since any node stores either the pointers, or the next-hop information, and not both of
them. In order to improve the speed of the IP lookup algorithms, the multibit trees were proposed for
storing the lookup tables [5,8-9,12,14,17].

In each step of the multibit tree traversal, the child node is determined based on the appropriate part of the
given IP address, i.e. the multibit stride. In this way, the worst-case IP address lookup takes the smaller
number of accesses for longer strides. In particular, it takes Lmax/L memory accesses, where L is the stride
length in bits. Prefixes which are not divisible by the stride length, L, are typically expanded, and
represented by multiple longer prefixes whose length is divisible by L. For example, for strides with length
L=4 bits, prefix 01*, should be expanded to prefixes 0000*, 0001*, 0010*, 0011* and its next-hop
information will be pushed to these prefixes unless they store the next-hops that correspond to the longer
prefix (3, or 4 bits long in this case). So, multibit trees have larger memory requirements than the binary
tree while achieving the higher speed. There are different ways to reduce the memory requirements of
multibit trees.

One way to reduce the memory of multibit trees is by the node compression as is done in Lulea algorithm
[14]. Since consecutive nodes in multibit trees often carry the same next-hop information, this next-hop
information can be stored only in the first of these nodes, while the bitmap vector stores the deleted nodes

[14]. The bitmap vector has its element equal to “1”, if the node corresponding to this element is not
deleted. The bitmap technique was also analyzed in [1-3,6-8,11]. In FIPL (Fast Internet Protocol Lookup)
algorithm, each multibit node contains: the internal bitmap that indicates the prefixes with next-hops within
that node, the external bitmap that indicates which children of the node exist, a pointer to the array of next-
hops that correspond to the internal nodes, and a pointer to the array of children nodes [5]. The bitmap
technique was the main building block of other lookup algorithms as well, such as EHAF (Efficient
Hardware Architecture for Fast IP Lookups) and PSTS (Parallel Search Trie-based Scheme) [6,7]. But,
these algorithms are not sufficiently scalable to support IPv6, as will be shown later in this paper.

Path compression can be applied to the multibit trees too. Level compressed (LC) tree is obtained by
recursive transformation of a binary tree [17]. Starting from its root, the largest full binary subtree is
replaced by the one-level multibit tree. The recursive process is then repeated starting from each leaf of the
multibit subtrees obtained in the previous phase of transformation. Alternatively, a binary subtree is
replaced by the one-level multibit subtree if it has sufficiently high density (the number of nodes divided by
2D, where D is the subtree depth). In this way, the memory requirements of the multibit trees can be
reduced, but still, multiple memory accesses are required in order to find the longest prefix match.

One of the main problems of trees, especially in the IPv6 case, is the storage of very large number of
empty nodes needed only for traversing the tree. These empty nodes significantly increase memory
requirements. PT (Priority Tree) algorithm overcomes this problem by moving the longer prefixes into
empty nodes of levels closer to the root of a binary tree [18]. There are two types of nodes – ordinary node
whose prefix corresponds to the node’s path and priority node which stores the prefix of some of its
descendants. In this way, empty nodes are avoided and the number of nodes in a tree equals the number
of prefixes. As a result, the larger lookup tables can be supported by priority trees. However, due to
asymmetry of original binary trees, the depth of priority trees is not significantly reduced, and the lookup
time can be reduced only by using multiple memories. CMST (Classified Multi-Suffix Trie) algorithm uses
the same idea of pushing prefixes to the upstream empty nodes, only within multibit and not binary trees
[19].

The lookup speed of the multibit trees can be increased by the parallelization and pipelining [1-4,10].
Nodes at different levels must be stored in different memories. Search of the longest prefix match still
requires multiple memory accesses. However, after the first level is searched and its memory is accessed
for some IP address, it can be then searched for the next IP address without waiting for the first search to
complete. In this way, the lookup throughput (the number of lookups per second) can be increased by the
factor equal to the number of memories. In POLP algorithm (Parallel Optimized Linear Pipeline), the lookup
throughput is further increased by evenly distributing subtrees across the multiple pipelines that work in
parallel [4].

Fig.1 shows the POLP architecture in which J (J≤Q) lookups can be performed in one clock cycle. The
pipeline selector should be able to switch J lookup requests (i.e. IP addresses) to the pipelines that hold
the corresponding subtrees of interest. External memory is associated to each pipeline, and it stores the
next hop information for the nodes in this pipeline. Nodes of each pipeline are split among the stage
memories, so that these stages can be accessed also in parallel. In this way, the lookup throughput of one
pipeline is increased.

2.2 Lookup Algorithms based on Hashing

Lookup algorithms achieve various savings using the fact that a small portion of possible prefixes is
actually used. Hashing offers itself as a natural way to exploit this fact [21-24]. Hash is a function that maps
a bit sequence into, typically, a shorter bit sequence, so that the probability of collision (that two arguments
have the same result) is very low. Lookup algorithms based on hashing are difficult to scale for several
reasons. First, hash function assumes the arguments of equal lengths. Secondly, good hash functions that

provide low probability of collision are complex and slow. Finally, the entire prefixes should be stored in
hash tables, and they have high memory requirements.

Since the hash functions assume the arguments of equal lengths, only prefixes of equal lengths can be
searched within one hash table access. If the prefix of a certain length exists in the hash table, then the
search should be continued among the longer prefixes that were not examined, and vice versa. In the
worst case, prefixes of log2LD different lengths should be searched in separate hash tables, where LD is the
number of different prefix lengths. Unfortunately, these search phases cannot be pipelined since the
sequence in which the hash tables are accessed depends on the incoming IP addresses.

There are different ways to speed up the search through different hash tables. One is to replicate hash
tables onto different memories, and to pipeline searches for the longest match prefixes of different IP
addresses using these memories. Obviously, increasing the number of memory chips increases the
complexity of the PCB design. Alternatively, the number of the prefix lengths can be reduced, by the prefix
expansion [23]. In this case, each prefix is substituted by multiple longer prefixes of the closest longer
length that is hashed. As a result, the existing IPv4 lookup tables would be significantly enlarged (at this
moment around 5 times), and using several large DRAM memories would be required. This scheme also
increases the complexity of the PCB design. In OAL (Offset Addressing Lookup), the lookup comprises two
steps [24]. In the first step, the longest matching prefix is found in a binary tree whose nodes are
addressed by their offsets with respect to the parent nodes. In the second step, this prefix is hashed, and
its hash determines the bucket where the next-hop information resides. The selected bucket is then
searched for the next-hop information. In this way, multiple hashing for different prefix lengths during one
lookup is avoided. However, in each step multiple memory accesses are needed. Another way to increase
the lookup speed is by using Bloom filters [21]. Bloom filters are based on prefix hashes, and, they can
determine if a given prefix exists in the table, before this table is accessed. Bloom filters can be wrong with
small probabilities, and give false positives.

The best hashing algorithms such as MD, or SHA would spread prefixes evenly over the buckets in the
hash table. However, they are complex for implementation, and, therefore slow. Fast hashing algorithms
produce collisions with non-negligible probabilities. As a result, multiple prefixes may have the same hash,
and would be stored in the same bucket of the hash table. Then, the search of prefixes with the given
length might require multiple accesses to the hash table. Different ways were proposed to minimize the
effect of collisions on the lookup speed. For instance, it was proposed that buckets should be divided into
sections, only one hash is calculated for the given prefix, and the prefix is stored in the section with the
smallest number of prefixes in the corresponding bucket [22]. Still, all sections that may contain the given
prefix might have to be examined. Counting Bloom filters can be used to determine in advance if some
bucket contains the given prefix as was proposed in PHFT (Pruned Fast Hash Table) [21]. Multiple hashes
are calculated for each prefix, and the appropriate counters are incremented when the prefix is inserted
and vice versa. A prefix is stored in the hash table with the lowest counter. Incremental updating of the
PHFT lookup table is a formidable task.

Since multiple next-hops might be stored in some bucket due to the collisions, each next-hop must be
associated with its prefix. Consequently, prefixes must be stored in the hash table, which reduces the
scalability of the IPv6 lookup algorithms based on hashing.

2.3 TCAM Lookup Algorithms

Ternary Content Addressable Memories (TCAM) allows the most straightforward lookup within one clock-
cycle [25-31]. For a given input word, in our case IP prefix, TCAM provides its location as the output. The
obtained TCAM location determines the SRAM location from which the router output port could be read.
TCAMs store ones, zeros and don’t cares which are convenient for storing prefixes of variable lengths [26].
The prefixes should be stored in TCAMs in the decreasing order of their lengths, which makes the

incremental updates of TCAMs complex. TCAMs allow fast lookup, but they are more complex and more
power hungry than other types of memories, e.g. SRAMs that are widely used for the IP lookup as well
[26]. TCAMs consume two times more transistors than SRAMs, and they consume the power which is on
the order(s) of magnitude higher. For these reasons, TCAMs were used mainly in switches and edge
routers that do not store the large number of prefixes. However, there are different proposals in the
research literature to overcome the limitations of TCAMs and make them more scalable and power-
efficient.

TCAM lookup algorithms typically include partitioning of a TCAM into blocks, and activating of only few
blocks at the time when the TCAM is searched [25,27,29-31]. Namely, the consumed power is proportional
to the number of bits that are searched at some point of time, and can be decreased in this way. TCAM
lookup algorithms differ according to the ways in which the prefixes are distributed across the TCAM
blocks. They can be divided in two ways, based on: key-IDs, or subtrees. In the first, straightforward case,
the key-ID comprises several bits of the IP address, and it determines the address of the TCAM block at
which this IP address will be placed [27]. Then, the subtables might have uneven sizes, and, consequently,
the TCAM consumes more power because its larger blocks consume more power [29,31].

A comprehensive comparison of the TCAM partitioning schemes based on subtrees is given in [25]. In the
simplest scheme, each block (or bucket) of a partitioned TCAM stores prefixes of one subtree. In this way,
it is fairly easy to find the bucket of some prefix using its covering prefix. A covering prefix of some bucket
is the nearest ancestor of its subtree root which contains a prefix. The longest prefix match of a given IP
address can be found in the bucket whose covering prefix is the longest prefix match of this IP address
among all the covering prefixes. So, the bucket in the partitioned TCAM can be found by using another
TCAM comprising only covering prefixes. The simplest architecture for searching the partitioned TCAM is
given in Fig.2. Index TCAM (ITCAM) comprises covering prefixes. Output of the ITCAM is the index of the
covering prefix which is the longest prefix match of the given IP address. This index points to the memory
location in the index SRAM (ISRAM) memory which determines starting location of the bucket in the data
TCAM (DTCAM), and the size of this bucket. Output of DTCAM determines the location in the data SRAM
(DSRAM) memory where the next-hop information is stored.

Several algorithms for dividing the tree into subtrees were proposed. Their main goal is to even the bucket
sizes as much as possible. First, such a strategy minimizes the size of the largest bucket, and, therefore, it
minimizes the power consumption. Then, the easiest way to partition DTCAM is into blocks of equal size.
When evenly occupied, the buckets can be filled with the smallest number of null entries so that they all
have equal size. Finally, ISRAM will not need the information about the bucket sizes if the buckets are
equal. Buckets can be made more even by moving subtrees from bucket to bucket, while, of course,
allowing multiple subtrees in one bucket [30]. In this case, multiple covering prefixes would correspond to
one TCAM bucket.

Improvements can be also made by moving some information from TCAMs to SRAMs, because SRAMs
are cheaper than TCAMs, and consume less power. In the previous schemes, very limited amount of
information was stored at the SRAM locations. The ISRAM entry stored the bucket index and its size in the
worst case, for which 4 bytes were sufficient. The DSRAM entry stored only the next-hop information for
which 2 bytes were enough. On the other side, wide QDRII SRAM memories allow communication of 144
bits in one access. Consequently, more information can be stored at ISRAM and DSRAM locations. One
ISRAM entry could store indices and sizes (if they have different sizes) of multiple buckets. Then, the
merged subtrees could be represented with fewer covering prefixes in ITCAM. ITCAM size will be reduced
in this way. Information related to a certain subtree is extracted based on the suffix added to the covering
tree in order to obtain the subtree prefix in question. The structure of ISRAM entries depends on the bucket
types (if they have fixed of variable sizes), and on the type of mapping between ISRAM and DTCAM (if
multiple entry of ISRAM could point to a single DTCAM location). Similarly, the DSRAM entry could store
next-hops of multiple prefixes that form a subtree. In this case, DTCAM would not store all possible

prefixes, but the fewer number of covering prefixes of the small subtrees. The sizes of ITCAM and DTCAM
can be reduced roughly 3-8 times depending on the system parameter at the expense of the proportionate
SRAM increase, in the described way. The M-12Wb scheme was shown to require the smallest TCAM size
[25]. The M-12Wb consequently has also the low power consumption since TCAM is the biggest power
consumer. The M-12Wb architecture is shown in Fig.3. In M-12Wb, wide SRAMs are used for both ISRAM
and DSRAM (as 2W in its name indicates), and multiple covering prefixes might be mapped to one bucket
(as M-1 in its name indicates).

2.4 Balanced Parallelized Frugal Lookup Algorithm

We have proposed BPFL (Balanced Parallelized Frugal Lookup) algorithm as a lookup algorithm that is
suitable for IPv4 and IPv6 lookups [1,2]. Its main advantage is very frugal memory usage which allows high
level of parallelization and, consequently, high lookup speeds. It reduces the memory requirements using
several techniques. First, it does not keep any data about empty subtrees. Then, BPFL minimizes the
memory requirements for the subtree presentation. Finally, prefixes of non-empty subtrees are stored in
balanced trees which use fixed locations so they do not need pointers.

The BPFL search engine will be described in this section. First, its architecture comprising multiple levels will
be described. Then, the design of each level module will be explained. A module at each level contains two
parts, the subtree search engine, and the prefix search engine. The subtree search engine finds the location
of the subtree which contains the longest prefix in one of the balanced trees at the given level, provided that
such a longest prefix exists. The subtree search engine then finds the longest prefix in the located subtree.

Fig.4 shows the architecture of the BPFL search engine which comprises multiple levels. The number of
levels equals Lmax/D, where Lmax is the maximum prefix length i.e. the IP address length (32b for IPv4
addresses and 128b for IPv6 addresses), and D is the subtree depth. Module of level i processes subtrees
whose depths are equal to D, and which are determined by the (i-1)·D bits long prefixes. So, module of level
i processes only first i·D bits of the IP address, and finds the prefix whose length is greater than (i-1)·D bits
and less than or equal to i·D bits. The inputs of any module are the IP address and the signal Search that
instructs the module to start looking for the longest prefixes. Modules of all levels pass their search results to
the final selector, i.e. the location of the next-hop information in the external memory (Next-hop_addr).
Signal Match_found is used to signal the search success. If modules at more than one level signal the
successful searches, then, the selector chooses the result calculated at the deepest level. Finally, the
external memory is accessed to retrieve the next-hop information, i.e. the output port to which a packet
should be forwarded.

A module at level i contains two parts – the subtree search engine and the prefix search engine as shown in
Fig.4. The subtree search engine processes balanced trees comprising the prefixes of non-empty subtrees,
in order to find the subtree with the longest prefix of the given IP address, if such a subtree exists. The prefix
search engine processes these non-empty subtrees of prefixes, in order to find the longest prefix of the
given IP address. If the longest prefix match is found at the given level, the external memory address of the
next-hop information is passed to the final selector shown in Fig.4.

The subtree search engine at level i is shown in Fig.5. It processes KBi non-overlapping balanced trees that
store the subtree prefixes. Balanced trees are so called because each node in those trees has equal
number of descendant nodes through the left and the right branch. A range of prefixes with the length equal
to (i-1)·D is associated to one balanced tree at level i. A balanced tree is chosen by the balanced tree
selector depending on the range of prefixes to which the IP address belongs. The balanced tree selector
gives the address of the root of the selected balanced tree. The selected balanced tree is traversed based
on the comparisons of its node entries to the given IP address. If the (i-1)·D long prefix of the IP address is
greater than the subtree prefix stored at the current node, then, the next node (at the next level of the
balanced tree) is the right child, otherwise, the next node is the left child. If the subtree prefix at the node

equals the IP address prefix, the following balanced tree levels are traversed to enable pipelining while
forwarding the balanced tree index and the address of the balanced tree node containing the IP address
prefix. The subtree address is calculated using this node address. Signal Found_j is used to inform the
succeeding balanced tree levels that the subtree has been found, while signal Search_j is used to instruct
the search of the succeeding levels. In order to frugally use the on-chip memory, balanced tree nodes do not
store pointers to their children. Instead, locations (addresses) of all nodes in each balanced tree are
predetermined. For the sake of simplicity, the left child address is obtained by adding ‘0’ before the parent’s
address, and the right child address is obtained by adding ‘1’.

The prefix search engine is shown in Fig.6. It consists of the bitmap processor and the internal memory
block. The internal memory comprises the subtree bitmaps that indicate non-empty nodes in these subtrees.
Elements of the complete bitmap vector are ones, if the corresponding nodes in a subtree are non-empty.
However, if the subtree is sparsely populated, the complete bitmap vector would unnecessarily consume the
large number of memory bits. In this case, it is more prudent to store a list of indices of non-empty nodes. In
our design, if the number of non-empty nodes is below the threshold, their indices are kept in the internal
memory; otherwise, the complete bitmap vector describing the subtree structure is stored in the internal
memory. In both cases, a pointer to the bitmap vector is determined based on the subtree address obtained
from the subtree search engine. The bitmap processor finds the longest prefix of the IP address within the
subtree based on either the list of non-empty nodes or the bitmap vector. The prefix search engine forwards
this result to the final selector together with the signalization of the search success, and the external
memory address where the next-hop information resides. The memory address of the next-hop information
in the external memory is determined based on the subtree address, the prefix location in the subtree
bitmap and the deepest level in which the bitmap is found.

2.5 Modified BPFL Algorithm

In BPFL, only the next-hop information is stored in the external memory [1,2]. In this paper, we propose a
modification of BPFL which improves its scalability by increasing the amount of information that could be
stored in the external memory. In this modified BPFL, the prefix search engine and the final selector
exchanged their places as shown in Fig.7. The proposed modification can significantly reduce the overall
internal memory requirements, because the large part of the memory used by the prefix search engine
could be moved to the external memory.

3. Performance Analysis of Lookup Algorithms

In this section, we will examine the memory requirements of representative lookup algorithms.
Parallelization improves the lookup speed, but it often requires the on-chip memory whose size limits the
scalability of a lookup algorithm. For this reason, we will also specify the on-chip memory requirements for
the lookup algorithms, as the measure of their scalability. One chip with the control logic and its internal
memory (FPGA, ASIC), and up to two external memories are assumed to be available in all cases for the
fair comparison. In this way, the PCB design is kept simple. One external memory would be used for the
next-hop information, and the other memory would be used for storing the information about the lookup
table. The only exception is the M-12Wb algorithm, where additional two TCAM and two SRAM memories
must be used.

In all analyzed lookup algorithms, we assume that the next-hop information length is H=16 bits. In these
lookup algorithms, D denotes the depth of subtrees, L denotes the prefix length, Lmax denotes the maximum
prefix length (i.e. the IP address length), S denotes the number of subtrees, N denotes the number of
prefixes with the next-hop information, P denotes the pointer size and M denotes the memory requirements.

3.1 Efficient Hardware Architecture for Fast IP Lookups

In EHAF, a binary tree for IPv4 addresses is split into four levels of equal depth [6]. Level 1 stores two
subtrees of depth D1=7, and the most significant bit in the IPv4 address determines which of the two
subtrees should be chosen. A bitmap vector with B1=255 bits is associated to each subtree (where B1 is the
number of total nodes in the subtree, i.e. B1=2(D1+1)-1), and the next-hop information with length H is
associated to each node. So, the total number of memory bits at level 1 is:

M1EHAF=2·B1·(H+1) (1)

Level 2 stores all subtrees of depth D2=7, while the most significant D1+2=9 bits of the IP address are used
for choosing one of these subtrees. A bitmap vector of B2=255 bits is associated to each subtree, and the
next-hop information of width H is associated to each node. So, the total number of memory bits at level 2 is:

M2EHAF=2(D1+2)·B2·(H+1) (2)

Level 3 stores only non-empty subtrees of depth D3=7. A bitmap vector with length 2(D1+D2+3) is used for
marking the existence of subtrees at level 3, because the most significant D1+D2+3=17 bits determine the
subtree at level 3. A subtree pointer vector stores the pointers to the non-empty subtree bitmaps. The
pointer length should be at least log2(S3), where S3 represents the number of non-empty subtrees at level
3. Again, the subtree bitmap length is B3=255 bits. So, the total number of memory bits at level 3 is:

M3EHAF=2(D1+D2+3)+2(D1+D2+3)·log2(S3)+S3·B3·(H+1) (3)

It would be impractical to use the bitmap vector for marking the existence of non-empty subtrees at level 4
since it would be too large. So, the bitmap vector for marking the existence of non-empty groups of subtrees
is used. The group of subtrees is non-empty if at least one subtree in the group is non-empty. Subtrees in
one group share the common most significant D1+D2+3=17 bits. A vector of pointers to the group bitmaps is
stored, each having the length of log2(G4) at least, where G4 is the number of non-empty groups at level 4. A
group bitmap vector determines the non-empty subtrees in this group whose maximum number is 256 bits.
A subtree pointer vector comprises pointers to the non-empty subtree bitmaps, and it is associated to the
group bitmap vector. The subtree pointer length should at least be log2(S4), where S4 is the number of non-
empty subtrees at level 4. So, the total number of memory bits at level 4 is:

M4EHAF=2(D1+D2+3)+2(D1+D2+3)·log2(G4)+G4·2

(D3+1)+G4·2
(D3+1)·log2(S4)+S4·B4·(H+1) (4)

The total memory required by EHAF, MEHAF, is the sum of the memory requirements for each level:

MEHAF=M1EHAF+M2EHAF+M3EHAF+M4EHAF (5)

To achieve one lookup per clock cycle, slices of memories carrying information about bitmaps and pointers
must be accessed independently, and, therefore, they must be placed in the internal memory, since there is
at most one external memory available for the lookup table information. We choose to place bitmaps for
non-empty subtrees at level 3 in the external memory, since they require the largest capacity. EHAF is not
suitable for IPv6 addresses as the bitmap vectors for levels that correspond to the prefixes longer than 32
bits would be too large for practical implementation.

3.2 Parallel Search Trie-based Scheme

In PSTS (Parallel Search Trie-based Scheme), all prefixes are pushed so that their lengths are multiple of
eight (8, 16, 24 and 32 bits), [7]. Prefixes of equal length represent one level, and the levels are searched in
parallel. Level 1 stores a bitmap vector for L1=8 bits long prefixes, and the size of the bitmap is 2L1 bits. The
next-hop information of length H is associated to each node. Therefore, memory requirements for level 1
are:

M1PSTS=2L1·(H+1) (6)

Level 2 stores also a complete bitmap vector for L2=16 bits long prefixes, and the size of the bitmap is 2L2

bits. Two additional bitmaps of the same length are stored, and they are used for determining the existence
of groups of prefixes at level 3 and 4 which share the same most significant L2=16 bits of the IP address. A
vector of pointers is associated to each of these bitmaps, where one pointer is P2 bits long, and it is
associated to a group of B2 bits in bitmap. Therefore, the memory requirements for level 2 are:

M2PSTS=(2·2L2)/B2·(P2+B2)+2L2·(H+1) (7)

Level 3 stores the bitmaps that determine the existence of prefixes with valid next-hop information in non-
empty groups of level 3 prefixes that are L3=24 bits long. Two more vectors are associated to these group
bitmaps. The first vector is the next-hop bitmap whose element is set to 1 for the first prefix that was made
by pushing of a certain prefix, and it is 0 for other prefixes which were made by pushing this prefix. In this
way, the next-hop information corresponding to some prefix is not unnecessarily replicated for all the
prefixes obtained by pushing the original prefix. The second vector represents the pointers with length P3 to
the locations with the next-hop information. Memory requirements for level 3 are:

M3PSTS=G3·(2

(L3-L2)+2(L3-L2)+P3)+N3·H (8)

where G3 is the number of non-empty groups of prefixes at level 3, and N3 is the number of prefixes with
lengths in the range 17-24 bits.

Level 4 has the same structure as level 3, only the number of prefixes in one group is longer - it is equal to
2(L4-L2), where L4=32 bits is the length of prefixes at level 4. So, the memory requirements for level 4 are:

M4PSTS=G4·(2

(L4-L2)+2(L4-L2)+P4)+N4·H (9)

where G4 is the number of non-empty groups of prefixes at level 4, and N4 is the number of prefixes with
lengths in the range 25-32 bits.

The total memory required for PSTS, MPSTS, is the sum of the memory requirements for each level:

MPSTS=M1PSTS+M2PSTS+M3PSTS+M4PSTS (10)

Since the information about the lookup table that must be considered in each step is too large, it cannot be
pulled from the external memory, but it must be stored in the internal memory. Similarly as EHAF, PSTS is
not suitable for IPv6 addresses because bitmaps become too large as the prefix lengths increase.

3.3 Parallel Optimized Linear Pipeline

In POLP subtrees of original binary tree are distributed across Q pipelines, so that they contain similar
numbers of nodes [4]. Each pipeline contains KS stages, where each stage has one memory that stores F
nodes of subtrees associated to the corresponding pipeline. Nodes of subtrees in one pipeline are
distributed across the stages so that they have similar numbers of nodes. The only rule is that the
descendants of one node must be in the following stages to enable the pipelining. Each location in the stage
memory contains the pointer that determines the location of the children, and the next-hop information of
length H associated to the node. Pointer to the children nodes comprises the stage index (log2KS bits) and
the location in the corresponding stage memory (log2F bits). Based on the first I initial bits of the IP address,
the pipeline is determined, along with the location of the subtree’s root in the first stage of the pipeline.

Mapping of subtrees to the pipelines is stored in the selector that has 2I locations, and the pipelines are
indexed with log2(Q) bits. The total memory requirements MPOLP for POLP are:

MPOLP=Q·KS·F·(log2KS+log2F+H)+2I·log2(Q) (11)

The next-hop information can be placed at the node’s location, or in the external memory where its location
would be determined by the node’s location. It does not make sense to place any of the stage memories
externally, since they are of similar size and their number is too large (around 200 for IPv4).

3.4 Fast Internet Protocol Lookup

In FIPL, m-ary tree structure is used in which the strides of length L=4 bits are used [5]. Each node contains
the bitmap of internal nodes (2L bits), the bitmap that determines the existence of children nodes (2L bits), a
pointer to the next-hop information associated to the internal nodes (PNH bits), and a pointer to the head of
the children array (PCA bits). The total memory requirements, MFIPL, are:

MFIPL=2L·KA·(2

L+2L+PNH+PCA)+KB·(2
L-1)·H (12)

where KA is the number of the 2L node arrays, and KB is the number of the internal bitmaps with at least
one valid next-hop information.

3.5 Priority Tree

PT is created from the binary tree by moving the prefixes to the upstream empty nodes [18]. A node in the
tree contains pointers to the left and right child, the next-hop information, the prefix and the priority indicator.
The priority indicator specifies the type of the node. In the case of a priority node, it stores the prefix that has
been moved from some of its descendants. Lookup is performed in the same manner as in the case of a
binary tree. The tree is traversed and in the case of a priority node, its prefix is compared to the IP address.
If the match is found the lookup ends at that node, otherwise the lookup continues if the corresponding child
exist. The number of nodes in a tree is equal to number of existing prefixes. The total memory requirements,
MPT, are:

MPT=N·(2·log2N+H+1+ Lmax) (13)

The number of levels in a priority tree might be as large as in binary tree. Therefore, the PT lookup is slow
requiring multiple memory accesses. The speed of one lookup per cycle can be achieved by parallelization
when the entire lookup table is stored on chip. An external memory could be used for storing the next-hop
information.

3.6 Classified Multi-Suffix Trie

CMST is based on the multibit priority tree [19]. For each child, a CMST node contains two fields. The first
field contains the suffix of the longest prefix that is the descendant of the given child and the corresponding
next-hop. The second field contains the next-hop information associated to the given child. The CMST
node also stores the pointers to the corresponding prefix tree and children array [20]. The prefix tree
comprises internal nodes of the multibit tree with prefixes which were not moved. Each node in the prefix
tree stores the suffix value, the next-hop and left/right child pointers. Total memory requirements for the
CMST tree, MCMST, are:

MCMST=∑i =1..Lmax/L Ki· [2

L·(Lmax-i·L+H)+ 2L· H+PPT+PCA] (14)

where Ki is the number of CMST nodes at level i, PPT is the prefix tree pointer length and PCA is the children
array pointer length.

Total memory requirements for prefix trees MPT are:

MPT=NPT·(L-1+H+2·PPTN) (15)

where NPT is the total number of prefixes stored in prefix trees and PPTN is the length of the pointers to the
children in a prefix tree.

Similarly as in the case of PT, the speed of one lookup per cycle is possible to achieve through
parallelization when the lookup table is placed on chip, i.e. in the internal memory. The next-hop
information could be stored externally.

3.7 Offset Addressing Lookup

In OAL, all prefixes are pushed to the tree’s leaves [24]. After that, all internal nodes are indexed from the
top-left to the bottom-right. Each internal node contains child indicators and offsets. Child indicator is set
when the corresponding child is a leaf. Offset is used for traversing the tree. Address of the left child is
calculated as the sum of the parent’s address and the offset value. In the case where both children are
internal nodes, the right child is at the location which is next after the left child. The search ends at the
node whose child is leaf. Next-hops are stored in the next-hop memory divided into KB buckets. Each
bucket contains NB (prefix, next-hop) pairs. The longest prefix match is passed through K hash functions in
parallel to determine the buckets that can store the corresponding next-hop information. A new prefix is
added to the shallowest bucket only. However, as the number of pairs in buckets change during time, all
buckets must be searched. Total memory required for storing internal nodes of the tree, MIN, is:

MIN=KIN·(2+POF) (16)

where KIN is the number of tree’s internal nodes and POF is the number of bits used for offset value.

Total memory requirements for the next-hop memory MNH are:

MNH=KB· NB · (Lmax+H) (17)

Since the prefixes are found using binary tree, the lookup process is slow unless the parallelization is
applied. Parallelization can be implemented by storing the tree in the internal memory.

3.8 Pruned Fast Hash Table

In [21], the PFHT lookup algorithm that uses Bloom filters and hashing tables was proposed and analyzed.
For each prefix length Li, a Bloom filter is configured. When a new prefix with length Li is added, the
corresponding Bloom filter first calculates Ki buckets in the hash table with Ti locations, and, then,
increments the counters, Ci bits long, associated to these buckets in the hash table. If one of the counters is
0 for the given IP address, the prefix doesn’t exist in the lookup table. The probability of false positive can be
made very low if Ti and Ki are large enough to support the given number, Ni, of prefixes with length Li. Each
hash table stores the link lists of the prefixes and their next-hop information, and the pointers of length Pi to
these link lists. The total memory required by PFHT, MPFHT, is:

MPFHT=∑i =1..Lmax [(Ci+Pi)·Ti+(Li+H+Pi)·Ni] (18)

Since Bloom filters are accessed simultaneously, they need to be stored internally. Then, the corresponding
bucket is accessed using its pointer that could be stored in the external memory with the pointers to all other
buckets. The selected bucket might have to be accessed multiple times if more prefixes are stored in it.
Since the probability that the number of prefixes in a bucket is larger than 2 is very low, the bucket prefixes
with their next-hops could be stored in the second external memory with all other buckets. Multiple prefixes
of one bucket could be read with one memory access to wide SRAM, since their number is small. The
probability that one lookup is performed per memory access is close to 1.

3.9 Many-1 Two-level TCAM with Wide Memory Lookup

In [25], many TCAM schemes were analyzed and compared in terms of TCAM size and TCAM power
consumption. It was concluded that the M-12Wb lookup algorithm requires the TCAM of the smallest size,
and that it consumes the least amount of power. Formula for the worst-case TCAM size was given in [25],
however, for the real routing tables, the required TCAM size is below this worst-case size. The M-12Wb
architecture given in Fig.3 comprises two TCAM memories and two wide SRAM memories (the word that
can be read from the wide SRAM in one clock cycle is W=144b long). The first TCAM memory (ITCAM)
contains NC covering prefixes. ISRAM has the same number of locations as ITCAM and it is indexed by
ITCAM. It contains suffixes of the corresponding ITCAM prefixes and each suffix points to one bucket in
DTCAM. There are KB buckets of equal size NB in DTCAM, and multiple ISRAM suffixes can point to each
of these buckets. Suffixes and the corresponding next-hops are stored at the DSRAM location that
corresponds to one subtree prefix in DTCAM. The total memory requirements of the M-12Wb algorithm
are:

MM-12Wb=MTCAM+MSRAM=(NC+KB·NB)·Lmax+(NC+KB·NB)·W (19)

We consider MTCAM to be the amount of the on-chip memory since TCAM implements processing for the IP
lookup.

3.10 Balanced Parallelized Frugal Lookup

In BPFL, a binary tree is split into levels, and only non-empty subtrees are stored at each level [1,2]. Levels
have the same depth D. Each level uses two memory slices – a slice for storing subtree prefixes in order to
find the right one, and a slice for storing subtree bitmaps. These slices are part of the subtree search engine
and the prefix search engine, respectively. The subtree prefixes are stored in the nodes of balanced trees.
Level i contains KBi balanced trees, and each balanced tree contains KNi nodes (i.e. subtree prefixes), where
the subtree prefix length equals to Li=(i-1) ·D. Memory slice for the subtree bitmaps is divided in two parts for
storing sparse subtree bitmaps and for storing either additional nodes or complete bitmaps. A sparse
subtree bitmap comprises only NL indices of the existing nodes (prefixes) in sparsely populated subtrees
and an overflow pointer of length P. The indices are D+1 long. If the number of the existing nodes in the
subtree is greater than NL, but lower than NH, the overflow pointer points to the indices of additional subtree
nodes (in steps of ∆ nodes); otherwise, the complete bitmap vector is used. Two thresholds, NL and NH, are
chosen to allow more subtle adjustment of memory usage to the statistical properties of the lookup tables.
Since static addressing is used, no pointers beside the overflow pointers are needed, and the memory
requirements are minimized. Memory required for subtree prefixes at level i is:

MSPi=KBi ·KNi ·Li (20)

Memory required for subtree bitmaps at level i are:

MSBi=KBi ·KNi ·(NL·(D+1)+P)+SLi ·(D+1)+2(D+1)·SHi
SLi=∑j j·∆·Sj (21)

where SLi is the number of locations reserved for subtrees that contain more than NL nodes and less than NH
nodes, Sj is the number of sparsely populated subtrees whose number of nodes is in range (NL+(j-1) ·∆,
NL+j·∆), and SHi is the number of densely populated subtrees at level i that contain more than NH nodes.
Selector chooses a result of the deepest level as it represents the best match and accesses the
corresponding next-hop information of length H. The memory requirements for the next-hop memory are:

 MNH=H·∑ i=1..Lmax/D [KBi ·KNi ·NL+SLi+2(D+1)·SHi] (22)

Total memory requirements of BPFL, MBPFL, are:

MBPFL=MNH+∑ i=1..Lmax/D (MSPi+MSBi) (23)

To achieve the speed of one lookup per cycle, search at all levels must be performed in parallel, so the
information associated to different levels have to be stored internally since at most one external memory
would be available for the lookup table.

3.11 Modified BPFL

In modified BPFL, the prefix search engine and the final selector exchanged their places. For such an
exchange, some additional information is added to each non-empty subtree. In modified BPFL shown in
Fig.6, the selector chooses the subtree of the deepest level that matches the given IP address. However, it
may happen that this subtree does not contain the prefix of the IP address with the next-hop information. For
this reason, the next-hop information of the closest ancestor of the chosen subtree must be stored in the
prefix search engine. The best place to store this information is at the location next to the overflow pointer.
Equations (20)-(23) for the calculation of memory requirements still hold, only (21) contains a small
modification that includes the described next-hop information of length H:

MSBi=KBi ·KNi ·(NL·(D+1)+P+H)+(D+1)·SLi+2(D+1)·SHi
SLi=∑j j·∆·Sj (24)

Modified BPFL enables storing of bitmaps of all levels in one memory (Fig.7), thus bitmaps can be now
placed in the available external memory, e.g. the wide SRAM.

4. Performance Comparison

In Table 1, the memory requirements for eleven representative lookup algorithms are compared for realistic
IP lookup tables [32]. IPv6 lookup tables were built based on the statistics of IPv4 real lookup tables, as
today’s IPv6 lookup tables are still small [33-34]. In Table 1, both the total memory requirements and the on-
chip memory requirements are provided. The on-chip memory has to be collocated with the control logic on
FPGA or ASIC in order to achieve the optimal parallelization. It is important to compare the on-chip memory
requirements too as this memory is scarce and can represent a potential bottleneck that would limit the
scalability of IP lookup. The best candidates for the external memory are the fast SRAMs that typically can
store several megabytes. The on-chip memories have the smaller size since they share the chip resources
with the control logic.

EHAF has the low on-chip memory requirements for IPv4 lookup tables, however, its total memory becomes
too large as the lookup tables increase. PSTS also has the low memory requirements for the smaller lookup
tables, however, as lookup tables become larger, its memory requirements increase unacceptably. These
two algorithms are not suitable for IPv6 addressing as the bitmap vectors for deeper levels would be too
long for practical implementation.

POLP has a good performance for IPv4 lookup tables and smaller IPv6 lookup tables. The number of
pipelines was assumed to be Q=8, and the number of bits for the pipeline selection was set to be I=8 and
I=16, in the IPv4 and the IPv6 case, respectively. The main problem of POLP is that the required number of
stages in one pipeline is too large, especially for IPv6 addresses, because the nodes at different tree levels
are placed into different stages. Possible solution for overcoming this problem would be using of m-ary
subtrees instead of binary subtrees, which would reduce the number of stages. Main advantage of POLP is
that multiple lookups can be simultaneously processed by different pipelines, and the total throughput can
be very high.

FIPL shows a very good performance for IPv4 lookup tables of all sizes, however, it requires too large
memory for IPv6 lookup tables. This is due to storing of very large number of nodes that hold no valid
information at levels that are closer to root of m-ary tree. Namely, most prefixes have lengths in the range
32-48 bits, so the nodes corresponding to the shorter prefixes are used only for traversing the tree but they
contain no valid information. A possible improvement of FIPL in the IPv6 case can be achieved by starting
the search from the deeper levels.

PT has the small total memory requirements for IPv4 lookup tables, which are slightly higher for IPv6 lookup
tables. As there are no empty nodes in PT, the IPv6 lookup table size does not increase significantly like in
POLP and FIPL. However, the high lookup speed can be achieved only through parallelization by storing the
lookup table on chip. Consequently, the on-chip memory requirements are much higher for PT than in the
case of BPFL and TCAM-based lookup algorithms.

In CMST, we set the stride length to L=4. CMST has acceptable memory requirements for small and
medium IPv4 lookup tables, but they become unacceptably high for large IPv4 lookup tables. In the case of
IPv6 lookup tables, memory requirements of CMST are unacceptably high for all observed lookup tables.
CMST nodes store the large number of bits which increases with the prefix lengths.

OAL has small memory requirements for IPv4 lookup tables, however, its memory requirements increase for
IPv6 tables. Also, OAL needs to be parallelized in order to achieve the high speed. For this reason, the
lookup tree based on offsets must be stored in the internal memory which is a critical resource.
Consequently, OAL requires the large on-chip memory which becomes a bottleneck in the case of IPv6
addresses. Also, multiple buckets have to be accessed in the memory that stores next-hop information so
multiple memory accesses are needed in this step, too. These multiple memory accesses impacts the
lookup throughput.

The on-chip memory requirements of PFHT are among the lowest ones, but for the large lookup tables it
requires the large total memory. PFHT is a promising candidate for further optimization, since it requires the
small on-chip memory. PFHT could include prefix expansion in order to minimize the number of prefixes with
different lengths, and, therefore, the number of hash tables. Also, the bitmap technique could be used to
reduce the size of hash tables. Namely, the subtree prefixes can be hashed instead of prefixes while the
subtree internal bitmaps can be placed in the external memory.

The M-12Wb algorithm requires the smallest total memory in the case of IPv4, but it requires the higher total
memory than BPFL and modified BPFL in the case of IPv6. For the M-12Wb algorithm, the on-chip memory
is in fact the TCAM memory. Compared to BPFL, the M-12Wb algorithm has the lower on-chip requirements
for IPv4 addresses and higher for IPv6 addresses. Compared to the modified BPFL, the M-12Wb algorithm
requires much larger on-chip memory in both cases. M-12Wb is a good candidate for IPv4 and IPv6 lookup
implementation as its memory requirements are reasonable.

In BPFL and modified BPFL, the subtree depth is set to D=8, the thresholds NL and NH are set to 8 and 40,
respectively, and step ∆ is set to 8. BPFL and modified BPFL have the lowest memory requirements for
IPv6 compared to all other lookup algorithms, and their lead increases as the lookup table grows. In

particular, modified BPFL requires 2.5 times smaller total memory, and 4 times smaller on-chip memory
than other algorithms for the largest IPv6 lookup table considered, which has more than 300K entries. The
M-12Wb algorithm requires the smaller total memory in the case of IPv4. On the other side, modified BPFL
requires the smallest on-chip memory in the case of IPv4, and, again, this memory saving become more
pronounced as the lookup table grows.

Interestingly, the memory requirements of BPFL and modified BPFL are lower in the case of IPv6, which is
due to fact that the percentage of sparsely populated subtrees is higher for IPv6 addresses, and they require
less memory. But, in the case of IPv6, the larger number of registers is used because of the longer subtree
prefixes, and the larger number of subtrees. However, registers are not a critical resource. Also, it can be
observed that the modified BPFL requires slightly larger total memory than BPFL. On the other side, the
modified BPFL allows the larger part of the memory to be placed externally, because it allows the subtree
bitmaps to be placed externally. This can be observed in Table 1 which shows that the on-chip memory
requirements are significantly lower when BPFL is modified as proposed in this paper.

Complexity of updating is also important aspect of the lookup algorithms. Since updating is performed less
frequently, only when the network topology changes, it is less critical than the IP lookup itself. Also, updating
is centralized and can be further optimized by using central processors with multiple cores. Here, we briefly
discuss updating for the lookup algorithms under the consideration.

EHAF and PSTS can perform easy updates as their structure is not highly compressed as it can be
observed from their total memory requirements. In EHAF, the bitmaps are updated if they correspond to the
given prefix, and possibly bitmaps should be added or deleted in the case of longer prefixes. In PSTS
updates are more complicated than in EHAF, because it requires management of the next-hop bitmaps.
Namely, prefixes of different length might share parts of the next-hop bitmaps. Updates in FIPL are fairly
easy to perform, as FIPL is based on m-ary tree. Inserting of a new prefix, or modifying the existing one, has
the same complexity as the IP lookup. Multiple ancestors of the given prefix might have to be deleted when
it is to be deleted, and this may require backtracking through the m-ary tree.

In POLP, updates are generally similar to the updates that correspond to other lookup algorithms based on
binary trees. However, updates in some cases can be complex. For example, when new nodes are to be
added as a result of the prefix insertion, and the number of stages with empty space is too low to store all
these nodes, the existing nodes should be moved to free up sufficient number of stages to fit the new nodes.

In PT and CMST updates are not complex. They are very similar to the updates in lookup algorithms based
on binary/multibit trees. The main difference in the case of inserting is that some priority prefix can be
swapped with the inserted prefix. After that, the priority prefix that was ejected from the node is inserted into
the tree in a recursive manner. In the case of a prefix deletion, a node becomes empty so some prefixes
might have to be pushed upwards to fill the empty node. Both operations have similar complexity as in the
binary tree case.

In OAL updating of a tree based on offsets is complex. In OAM, entries correspond to indices of internal
nodes. Therefore, in the case when new internal node is added or when the existing internal node is
deleted, indices of multiple internal nodes are changed. This leads to movement of large number of entries
in the memory based on offsets.

In PFHT, the updates can also be complex in some cases. In PFHT, a prefix is stored in the bucket whose
counter is minimal among the buckets that are calculated by hashing. Deletion of a prefix is complex,
because the counters of the corresponding buckets need to be decremented. Certain prefixes would need to
be moved to some of these buckets because their counters become minimal. Consequently, each prefix
should be stored in all of its calculated buckets, which implies very high memory requirements. Alternatively,
more complex updating schemes must be applied.

In M-12Wb, updating is complex since it involved the selection of the covering prefixes in an optimal way. In
addition, prefixes needs to be stored in TCAMs in a sorted order. Insertion or deletion of certain prefixes
might require a rearrangement of large number of prefixes.

BPFL and MBPFL also in most of the cases have easy updates. However, in the case when some subtree is
added or deleted, a large number of nodes might have to be moved across its balanced tree in order to keep
it balanced.

5. BPFL Implementation

Encouraged by its advanced scalability, we implemented the BPFL lookup algorithm on the FPGA chip.
FPGA chips are popular because of their programmability, and because of the high-level of parallelization
that they can provide. The FPGA chip used for this implementation was the Altera’s Stratix II
EP2S180F1020C5 [35]. Tables 2 and 3 show the chip resources required for the BPFL implementation in
the case of IPv4 and IPv6, respectively. In both implementations, the subtree depth is D=8. One can
observe that the chip resources are fully utilized only in the case of the largest IPv6 lookup table. So, IPv4
lookup tables with more than 310K entries can be supported by the selected FPGA chip, while the IPv6
lookup tables with more than 310K entries would require more advanced FPGA chips which are available. It
is clear that the higher portion of chip resources are used in the IPv6 case, due to the longer IPv6
addresses. But, the required external memory is smaller in the IPv6 case because more subtrees have the
lower density, while their storage is more efficient.

Since pipelining is used, one lookup can be performed per one clock cycle. So, even in the worst tested
case, the throughput of around 96 millions lookups per second was achieved, which is sufficient to support
40Gb/s links. More advanced FPGAs could achieve even higher throughputs.

6. Conclusion

In this paper, a wide range of IP lookup algorithms have been analyzed and compared in terms of their
scalability. A fair comparison has been made assuming that one lookup per memory access should be
achieved in order to support high bit-rates. Also, a reasonable complexity of the printed circuit board design
was assumed for all the examined lookup algorithms. As a result of the presented analysis, the optimized
TCAM lookup algorithm, hashed-based PHFT lookup algorithm, and BPFL were shown to be the most
promising candidates for IPv6. Modified BPFL has turned out to be attractive since its memory
requirements are consistently lowest in the case of IPv6, and it particularly frugally uses the on-chip
memory. This lead of the modified BPFL increases with the size of the IPv6 lookup tables, which is the
confirmation of its scalability. PHFT also has the low on-chip memory requirements and has a potential for
further optimization. Results of the presented analysis allowed us to recognize the lookup algorithms and
techniques which should be explored for further development.

Acknowledgment

This work was supported by the Serbian Ministry of Education and Science, Telekom Srbija and
Informatika.

References

[1] Z. Čiča, A. Smiljanić, Balanced Parallelised Frugal IPv6 Lookup Algorithm, IET Electronics Letters,

47(17) (2011) 963-965.

[2] Z. Čiča, L. Milinković, A. Smiljanić, FPGA Implementation of Lookup Algorithms, in: Proceedings of
International Conference on High Performance Switching and Routing 2011, Cartagena, Spain, July,
2011.

[3] Z. Čiča, A. Smiljanić, Frugal IP Lookup Based on Parallel Search, in: Proceedings of International
Conference on High Performance Switching and Routing 2009, Paris, France, June, 2009.

[4] W. Jiang, Q. Wang, and V. K. Prasanna, Beyond TCAMs: An SRAM-based Parallel Multi-Pipeline
Architecture for Terabit IP Lookup, in: Proceedings of IEEE INFOCOM 2008, Phoenix, USA, April,
2008.

[5] D. Taylor, J. Lockwood, T. Sproull, J. Turner, D. Parlour, Scalable IP Lookup for Programmable
Routers, in: Proceedings of IEEE INFOCOM 2002, New York, USA, June, 2002.

[6] D. Pao, C. Liu, A. Wu, L. Yeung, K.S. Chan, Efficient Hardware Architecture for Fast IP Address
Lookup, IEE Proceedings on Computers and Digital Techniques, 150(1) (2003) 43-52.

[7] R. Rojas-Cessa, L. Ramesh, Z. Dong, L.Cai, N. Ansari, Parallel-Search Trie-based Scheme for Fast IP
Lookup, in: Proceedings of GLOBECOM 2007, Washington D.C., USA, November, 2007.

[8] W. Eatherton, Z. Dittia, G. Varghese, Tree Bitmap: Hardware/Software IP Lookups with Incremental
Updates, ACM SIGCOMM Computer Communication Review, 34(2) (2004) 97-122.

[9] N. Yazdani, P. Min, Fast and Scalable Schemes for the IP Address Lookup Problem, in: Proceedings
of IEEE Conference on High Performance Switching and Routing 2000, Heidelberg, Germany, June,
2000.

[10] S. Kumar, M. Becchi, P. Crowley, J. Turner, CAMP: Fast and Efficient IP Lookup Architecture, in:
Proceedings of ANCS ’06, San Jose, USA, December, 2006.

[11] H. Song, J. Turner, J. Lockwood, Shape Shifting Tries for Faster IP Route Lookup, in: Proceedings of
ICNP 2005, Boston, USA, September, 2005.

[12] S. Sahni, K.S. Kim, Efficient Construction of Multibit Tries for IP Lookup, IEEE/ACM Transactions on
Networking, 11(4) (2003) 650-662.

[13] R. Sangireddy, N. Futamura, S. Aluru, A. Somani, Scalable, Memory Efficient, High-Speed IP Lookup
Algorithms, IEEE/ACM Transactions on Networking, 13(4) (2005) 802-812.

[14] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small Forwarding Tables for Fast Routing Lookups,
in: Proceedings of ACM SIGCOMM ’97, Cannes, France, September, 1997.

[15] M. Ruiz-Sanchez, E. Biersack, W. Dabbous, Survey and Taxonomy of IP Address Lookup Algorithms,
IEEE Network, 15(2) (2001) 8-23.

[16] V. Srinivasan and G. Varghese, Fast Address Lookups using Controlled Prefix Expansion, in:
Proceedings of ACM Sigmetrics 98, Madison, USA, June, 1998.

[17] S. Nilsson, G. Karlsson, IP-Address Lookup Using LC-Tries, IEEE Journal on Selected Areas in
Communications, 17(6) (1999) 1083–1092.

[18] H. Lim, C. Yim, E. Swartzlander, Priority Tries for IP Address Lookup, IEEE Transactions on
Computers, 59(6) (2010) 784-794.

[19] S.Y. Hsieh, Y.C. Yang, A Classified Multi-SuffixTrie for IP Lookup and Update, IEEE Transactions on
Computers, April, 2011.

[20] M. Berger, IP Lookup with Low Memory Requirement and Fast Update, in: Proceedings of HPSR
2003, Torino, Italy, June, 2003.

[21] H. Song, S. Dharmapurikar, J. Turner, J. Lockwood, Fast Hash Table Lookup Using Extended Bloom
Filter: An Aid to Network Processing, in: Proceedings of SIGCOMM ‘05, Philadelphia, USA, August,
2005.

[22] A. Broder, M. Mitzenmacher, Using Multiple Hash Functions to Improve IP Lookups, in: Proceedings of
IEEE INFOCOM 2001, Anchorage, USA, April, 2001.

[23] M. Bando, N.S. Artan, J. Chao, FlashLook: 100-Gbps Hash-Tuned Route Lookup Architecture, in:
Proceedings of International Conference on High Performance Switching and Routing 2009, Paris,
France, June, 2009.

[24] K. Huang, G. Xie, Y. Li, A.X. Liu, Offset Addressing Approach to Memory-Efficient IP Address Lookup,
in: Proceedings of INFOCOM 2011, Shanghai, China, April, 2011.

[25] W. Lu, S. Sahni, Low-Power TCAMs for Very Large Forwarding Tables, IEEE/ACM Transactions on
Networking, 18(3) (2010) 948-959.

[26] B. Agrawal, T. Sherwood, Modeling TCAM Power for Next Generation Network Devices, in:
Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software -
ISPASS 2006, Austin, USA, March, 2006.

[27] D. Lin et al., Route Table Partitioning and Load Balancing for Parallel Searching with TCAMs, in:
Proceedings of 21st IEEE International Parallel and Distributed Processing Symposium 2007, Long
Beach, USA, March 2007.

[28] V.C. Ravikumar, R.N. Mahapatra, L.N. Bhuyan, EaseCAM: An Energy and Storage Efficient TCAM-
Based Router Architecture for IP Lookup, IEEE Transactions on Computers, 54(5) (2005) 521-533.

[29] X. Zhang, B. Liu, W. Li, Y. Xi, D. Berminghem, X. Wang, IPv6-oriented 4*OC768 Packet Classification
with Deriving-Merging Partition and Field-Variable Encoding Algorithm, in: Proceedings of INFOCOM
2006, Barcelona, Spain, April, 2006.

[30] F. Zane, G. Narlikar, A. Basu, CoolCAMs: Power-Efficient TCAMs for Forwarding Engines, in:
Proceeding of INFOCOM 2003, San Francisco, USA, March/April, 2003.

[31] K. Zheng, C. Hu, H. Liu, B. Liu, An Ultra-high Throughput and Power Efficient TCAM-based IP Lookup
Engine, in: Proceedings of INFOCOM 2004, Hong Kong, China, March, 2004.

[32] http://data.ris.ripe.net
[33] M. Wang, S. Deering, T. Hain, L. Dunn, Non-random Generator for IPv6 Tables, in: Proceedings of

IEEE Symposium on High-Performance Interconnects 2004, Stanford, USA, August, 2004.
[34] http://bgp.potaroo.net
[35] http://www.altera.com

Table 1
Comparison of memory requirements of IP lookup algorithms

Lookup
Algorithm

Lookup
Table Size

IPv4 IPv6
Total Mem.

Requirements
[MB]

On-chip Mem.
Requirements

[MB]

Total Mem.
Requirements

[MB]

On-chip Mem.
Requirements

[MB]

EHAF
70K 3.53 0.54 - -

140K 5.33 0.77 - -
310K 9.64 1.17 - -

PSTS
70K 1.62 1.36 - -

140K 5.91 5.53 - -
310K 12.02 11.34 - -

POLP
70K 1.69 0.87 1.25 0.63

140K 2.93 1.51 7.32 3.98
310K 5.49 2.91 13.37 7.27

FIPL
70K 1.34 0.16 15.24 12.21

140K 2.22 0.28 27.00 21.61
310K 3.90 0.41 42.51 33.16

PT
70K 0.65 0.49 0.93 0.63

140K 1.35 0.98 1.88 1.33
310K 2.98 2.11 4.16 3.07

CMST
70K 1.36 1.02 6.27 5.8

140K 2.85 2.01 13.41 12.57
310K 6.32 3.96 29.95 28.33

OAL
70K 1.09 0.32 2.70 1.64

140K 2.23 0.58 5.36 3.14
310K 4.19 1.11 10.99 5.75

PFHT
70K 2.04 0.26 2.24 0.26

140K 4.27 0.51 4.66 0.50
310K 9.65 1.10 10.50 1.09

M-12Wb
70K 0.42 0.05 0.84 0.19

140K 0.81 0.11 1.72 0.39
310K 1.76 0.23 4.02 0.92

BPFL

70K 0.67 0.15 0.52 0.26
140K 1.46 0.29 1.11 0.47
310K 3.26 0.47 1.54 0.76

MBPFL

70K 0.68 0.02 0.54 0.08
140K 1.47 0.03 1.14 0.15
310K 3.28 0.04 1.59 0.23

Table 2
BPFL hardware resource usage in the case of IPv4

Table
Size LE FPGA

memory [Mb]
External

memory [MB]
fmax

[MHz]
70K 15.1K (11%) 1.93 (21%) 0.61 119.0

140K 19.4K (13%) 2.80 (30%) 0.80 113.6
310K 27.9K (19%) 5.60 (60%) 1.68 96.1

Table 3
BPFL hardware resource usage in the case of IPv6

Table
Size LE FPGA

memory [Mb]
External

memory [MB]
fmax

[MHz]
70K 52.1K (36%) 4.03 (43%) 0.32 110.5

140K 61.1K (43%) 6.33 (67%) 0.76 106.3
310K 89.7K (63%) 8.86 (94%) 0.95 99.9

Fig. 1.
POLP architecture

Fig. 2.
Partitioned TCAM architecture

Fig. 3.
M-12Wb architecture

Fig. 4.
BPFL architecture

Fig. 5.
Subtree search engine at level i

Fig. 6.
Prefix search engine at level i

Fig. 7.
Modified BPFL architecture

