CLouD NETWORKING AND COMMUNICATIONS

Improving Utilization of

Data Center Networks

Natasa Maksi¢ and Aleksandra Smiljani¢, Belgrade University

This work was funded by
the Serbian Ministry of
Science, and companies
Telekom Srbija and Infor-
matika.

ABSTRACT

In this article, we analyze and compare differ-
ent data center environments in terms of the
maximal throughput they offer to end nodes. In
particular, we examine to which extent balancing
can increase the throughput guaranteed for an
arbitrary traffic pattern. We consider and com-
pare two-phase balancing algorithms which are
optimized assuming different underlying routing
algorithms. It will be shown that optimized load
balancing significantly improves the maximal
loss-free throughput. A suite of routing algo-
rithms is examined on three cost-effective data
center topologies: fat-tree, dragonfly, and flat-
tened butterfly.

INTRODUCTION

Data centers are becoming Internet brains with
thousands of servers and switches. They process
and exchange enormous amounts of data at high
speeds in a limited space. To go beyond the
speed of a single processing node, very fast and
efficient networking is required. In addition,
packet loss should be minimized in data centers,
since many applications are delay-sensitive, and
retransmitted packets would be too late for
them.

The goal of reaching maximal guaranteed
throughput is imperative for being competitive
on the market. In data center topologies, which
have many alternative paths, this goal can be
achieved through load balancing. Load balancing
eliminates adversial traffic patterns that could
lead to link overloads by evenly distributing the
traffic across network links. Load balancing can
be optimized for maximal guaranteed traffic
using linear programming [1, 2]. We present
analytical and experimental comparisons of the
selected routing algorithms, and their extensions
with optimized load balancing. It is shown that
the highest throughput in a loss-free network is
achieved by an optimized load balancing scheme
based on equal-cost multipath routing, which is
adapted to a plethora of equal-cost paths typical
for data center networks.

This article is organized as follows. The sec-
ond section briefly introduces data center topolo-
gies with emphasis on fat-tree, flattened
butterfly, and dragonfly topologies, which are

assumed in our analysis. The third section
describes routing algorithms which are analyzed.
The fourth section presents analytical results for
the maximal guaranteed traffic loads in data cen-
ter networks supported by different routing algo-
rithms, as well as simulation results. The article
is concluded in the fifth section.

DATA CENTER TOPOLOGIES

Many different topologies have been proposed
in the literature, and a few of them are used in
data centers. In practice, the topologies that
minimize cost are naturally preferred, and they
are typically based on cheap commodity switch-
es. The cost of enterprise switches is low due to
economy of scale; however, their hardware is not
particularly designed for data center networking.
For this reason, in some of the proposed topolo-
gies, servers play the role of routers in order to
provide flexibility while keeping the cost low.
However, servers cannot be as scalable as
routers, which are specialized equipment.

The typical topology of data center networks
used to be hierarchical, usually with three layers
of hierarchy. The switches at higher layers ought
to be large in such a topology, and they ulti-
mately become a bottleneck of data centers,
which need to host thousands of servers. In addi-
tion, cost per bit per second is significantly high-
er for higher-capacity switches. For these
reasons, data centers with regular topologies are
becoming popular, in which switches of the same
or similar sizes are used. The most prominent
regular topologies proposed for data center net-
working are fat-tree, dragonfly, flattened butter-
fly, BCube, and DCell [3-6]. Toroidal and
hypercube topologies are used in parallel com-
puting clusters, because they are very easy to
grow as nodes are connected to neighbors. On
the other side, torus and hypercube have been
shown to incur much higher cost for the same
throughput than the more advanced topologies
we consider: fat-tree, dragonfly, and flattened
butterfly [3, 5, 6].

It has been shown that advanced techniques
such as load balancing and adaptive routing can
significantly improve performance of data cen-
ters [5-7]. Cheap commodity switches commonly
used in data centers are inflexible and cannot
support these novel mechanisms. For this rea-

32

0163-6804/13/$25.00 © 2013 IEEE

IEEE Communications Magazine ¢ November 2013

son, in several papers it has been proposed that
servers should play the role of routers besides
running applications and generating traffic, as in
DCell or BCube architectures [4]. That is,
servers could implement arbitrary routing poli-
cies and improve network performance. Howev-
er, packet processing is a heavy burden for
general-purpose processors, and consequently,
using servers instead of specialized networking
equipment is less scalable.

In this article, we examine novel routing pro-
tocols in fat-tree, flattened butterfly, and drag-
onfly topologies because they are the most
scalable and cost effective.

FAT-TREE TOPOLOGY

Fat-tree or folded Clos topology has been recog-
nized as a good solution to replace hierarchical
data centers because of their better scalability
and lower cost [3, 7]. Clos networks were initial-
ly proposed for building high-capacity circuit
switches in telephone networks using smaller
switching elements. Later, it was recognized that
high-capacity packet switches can be built in the
same way. In Clos packet switches, there is no
time to find a path for every single packet
through the network; therefore, load balancing is
used for efficient switch utilization [8, 9]. Nowa-
days, folded Clos or fat-tree topology is used in
data centers as well.

In the most popular three-stage Clos net-
work, switches in each stage are connected to all
switches in the following stage. In folded Clos,
switches in the first and third stages of an initial
Clos network are merged into the edge switches,
which are connected to the top-level switches
belonging to the second stage of the initial Clos
network. In general, a (2k, n) fat-tree network
has n stages and k% top-level k x k switches.
Edge switches are built recursively; an edge
switch of the (2k, n) fat-tree network is actually
the (2k, n — 1) fat-tree network in which top-
level switches have additional ports toward the
top-level switches of the parent (2k, n) fat-tree
network. An example of a (2k, 3) fat-tree net-
work is given in Fig. 1. It can be observed in Fig.
1 that a fat-tree network provides many different
paths between any pair of servers.

FLATTENED BUTTERFLY TOPOLOGY

In [3], it was assumed that ports represent the
main part of the switch cost, and it was shown
that hierarchical networks become much more
costly than fat-tree networks as the number of
servers exceeds a couple of thousand. In [5, 6], it
is conversely argued that links, including their
ports, represent the main part of the switch cost.
For this reason, flattened butterfly topology is
proposed as it decreases the number of links in
the network compared to the fat-tree topology.
Flattened butterfly topology is derived from a
butterfly self-routing network in which subse-
quent segments of the packet address determine
the output port of the switch at each stage. In
general, a k-ary n-fly butterfly network compris-
es n stages with N/2 k x k switches in each stage.
Switches of the first stage are connected to
switches 0, N/k, 2N/k, ..., (k — 1) - N/k in the sec-
ond stage, switches in the ith stage are connect-
ed to switches 0, N/ki, 2Nk, ..., (k — 1) - N/ki in

/ [
1 k 1 X
[>T || [>T |~
1 k 1 X
1 2

k2

2k

Figure 1. Fat-tree topology.

the next stage, and so on. Flattened butterfly
topology is obtained from a butterfly network by
merging switches with the same ordinal number
in all stages.

The flattened butterfly topology is shown in
Fig. 2, in which switches are identified by ordinal
numbers written in binary format. Each link is
denoted by the binary number in which symbol x
can be replaced by digits 0 or 1 to produce iden-
tifiers of the switches connected to that link. As
we can observe in Fig. 2, the flattened butterfly
topology has a smaller number of links com-
pared to the fat-tree topology, but it still offers a
large number of shortest paths between servers.

DRAGONFLY TOPOLOGY

Dragonfly topology was specially tailored to
decrease the cost of data centers [6]. It has been
observed that the cost of links in data centers
increase linearly with their length. Cost per unit
distance is lower for optical cables, while their
fixed cost is higher than that of electrical cables.
Optical cables are more cost effective for links
longer than 10 m. The motivation behind the
dragonfly topology is to decrease the data center
cost by reducing the number of global links with
lengths exceeding a specified threshold.

Dragonfly topology is presented in Fig. 3. All
switches are divided into groups with a switches
per group. In each switch, & ports are connected
to the switches in other groups, and the remain-
ing ports are connected to other switches of the
same group or to the servers. Switches of each
group are connected to the switches in all other
groups. Most commonly, each switch is connect-
ed to all other switches in the group, as shown in
Fig. 3. Alternatively, interconnection of the
switches in a group can be based on the flat-
tened butterfly topology.

Dragonfly topology is based on the assump-
tion that the cost of the switch hardware is negli-
gible, which is true in commodity switches with
small buffers and minimal packet processing
capabilities. However, performance of data cen-
ters could be improved with more advanced
switching and routing technologies, which would
obviously have a higher cost. In that case, the
assumption that global links represent the major
part of data center cost should be revisited.

IEEE Communications Magazine * November 2013

33

00...00, 00...01, 11..10, 1.1,
] oo..ox, [| x1..10, [|]
00...0x0,,
11...x0

e x1..11,

XOOOb 00X1b
. 11..x1,
x0...01}, 11...1%,

Figure 2. Flattened butterfly topology.

Also, dragonfly topology could provide savings if
the traffic is localized in nature, and applications
need to be aware of the network topology.

ROUTING PROTOCOLS

Routing protocols determine the paths that
packets take from their sources to their destina-
tions. Shortest path routing (SPR) algorithms
are the most commonly implemented in net-
works. However, they are being replaced in data
center networks by routing algorithms based on
load balancing, which more evenly utilize regular
topologies of data centers. Valiant balancing is
often considered, but it is defined in different
ways. According to the most common definition
of the Valiant balancing algorithm, a server
sends each packet with equal probability through
any router in the network.

The best, most even load balancing is
achieved when a path is determined for each
packet separately. In that case, packets of the
same flow could be reordered because they are
taking different paths, incurring different delays.
Alternatively, flows between some source-desti-
nation pair can be sent along different paths so
that the packets belonging to the same flow will
follow the same path. Such load balancing of
flows achieves significant improvements of net-
work utilization compared to shortest path rout-
ing. On the other hand, flow-based load
balancing is imperfect and unpredictable since
flows can have different sizes, which are hard to
anticipate at their starting times when they are
assigned to the balancing paths.

Hedera [10] and multipath TCP [11] are two
recent solutions for the problem of large flows
that disrupt even traffic distribution in the flow-
based balancing algorithms. Both algorithms
monitor flow sizes and react to the occurrence of
large flows. Since flow-based load balancing
requires additional complexity for monitoring
and assignment of the traffic flows, we consider
packet-based load balancing algorithms in this
article. Also, reordering of packets can easily be
resolved at the transport or application layer.

Adaptive routing has also been reconsidered
for data centers [5, 6]. In adaptive routing, the
paths that packets take depend on the traffic
load. Packets usually take a path based on the

buffer occupancy of the downstream switches
that are on the shortest paths toward the desti-
nation. Adaptive routing is risky because it caus-
es instabilities in the system. Also, their
interaction with reactive transport protocols such
as TCP would be very hard to predict.

In this article, we examine only oblivious
routing protocols that do not adapt to the traffic
load. We optimize load balancing for different
underlying routing algorithms: SPR, SPR with
minimal node degree (SPRm), and equal cost
multipath (ECMP).

SHORTEST PATH ROUTING

The most commonly used routing protocols in
wide area networks are shortest path routing
(SPR) protocols, such as Intermediate Server to
Intermediate Server (IS-IS), Open Shortest Path
First (OSPF), and Routing Information Protocol
(RIP). The Border Gateway Protocol (BGP)
also routes packets through different domains
along shortest paths, but it considers policies
introduced by domain operators as well. The
shortest path between two nodes is the one com-
prising links with the smallest sum of weights.
Link weights are typically proportional to the
transmission cost through the respective links.

Obviously, SPR protocols are the most effi-
cient since they utilize the network resources
with the lowest cost. However, the situation
might arise in which some links get congested
while others remain underutilized when SPR
protocols are used. SPR protocols are not well
suited for data centers, because they do not
make advantage of the path diversity provided
by the regular topologies of data centers. We
compare the performance of SPR protocols with
the performance of routing protocols based on
load balancing.

SHORTEST PATH ROUTING USING
MINIMAL NODE DEGREE

In the Dijkstra algorithm commonly used in SPR
algorithms [12], a parent of a new node is the
neighboring node with the minimal ID, which is
selected among the nodes on the tree with equal
costs of the paths to the root. In data center
topologies, which contain multiple equal-cost
paths, such candidate node selection is not likely
to utilize available paths to the fullest. This
would, in turn, create nodes with a large degree
in the tree, which would result in concentration
of traffic toward the tree root. If a node has
large degrees in multiple trees, it would be
clogged even for uniform traffic demand across
servers.

In order to reduce node degrees in Dijkstra
trees and provide alternative SPR paths for eval-
uation presented in this article, we propose the
SPRm algorithm. When a new node is added to
the Dijkstra tree in SPRm, its parent is selected
among the neighbors in the network that are on
the tree and connected to the root node through
the paths with minimal costs. Among these can-
didates, the neighboring node with the minimal
number of children is selected in our proposed
SPRm. If there are multiple such nodes, the one
with the minimal ID is selected.

SPRm maintains low complexity and high

34

IEEE Communications Magazine ¢ November 2013

execution speed, and improves the throughput
achieved by SPR in regular networks if there are
multiple equal cost routes between endpoints.

EQuAL COST MULTIPATH ROUTING ALGORITHM

Equal cost multipath routes the traffic along all
existing equal cost paths. Each router keeps a
routing table of all equal cost paths toward desti-
nations in a network and routes packets heading
to a given destination balanced across the appro-
priate links. Besides resilience against node and
link failures, ECMP provides more balanced
traffic distribution in the network, and higher
network throughput for typical traffic patterns.

The ECMP algorithm can be defined to bal-
ance either packets or flows. In the first case,
each router determines the next hop for a pack-
et based on its destination and the previous uti-
lization of the equal cost paths toward this
destination. In the second case, the path is deter-
mined in the same way for the first packet of a
flow, while the subsequent packets of the flow
follow the same path. The advantage of flow bal-
ancing is that the packets are delivered in order.
However, balancing is imperfect since different
flows have different sizes. For more even balanc-
ing, flow monitoring and assignment to the paths
must be implemented, which increases the rout-
ing complexity. For these reasons, we analyze
packet-based ECMP due to its simplicity and
better performance.

VALIANT BALANCED ROUTING

Valiant balanced routing (VBR) was proposed a
long time ago in the context of parallel process-
ing [13]. Valiant proposed to route each packet
entering the network through a randomly select-
ed intermediate node. In the particular network
under observation, a packet was sent to this
intermediate node along the shortest path, and
from the intermediate node to the final destina-
tion again along the shortest path.

In the literature, VBR balancing was defined
in different ways depending on the topology, and
particular definitions were chosen in an ad hoc
manner based on intuition [5, 7]. We adopt the
original definition of VBR in which each packet
is transferred through an intermediate node that
is selected randomly out of all nodes in the data
center network.

OPTIMIZED LOAD BALANCED
ROUTING ALGORITHMS

In our previous work [1, 2, 14], we proposed
load balanced shortest path routing (LB-SPR)
for wide area networks. LB-SPR is similar to
Valiant balancing, but it optimizes balancing
coefficients through different network nodes so
that the network throughput is maximized.

For each node in the network, a balancing
coefficient is defined as the portion of packets
that should be balanced through that node. In
Valiant balancing, all balancing coefficients are
equal. In the load balancing we are proposing
and analyzing, values of these coefficients are
optimized assuming a specific topology and the
weights assigned to the network nodes according
to their capacities. Balancing coefficients are

& Gs Gy Gy | T
h<™> h 4T h 4
| |
51 I — S,
G1

Figure 3. Dragonfly topology.

optimized so that the network throughput is
maximized while the guaranteed node traffic
loads are proportional to their respective
weights.

Optimized load balancing can utilize various
underlying routing algorithms besides conven-
tional SPR. An underlying routing algorithm
determines the path of a packet from the source
node to the intermediate node, and from the
intermediate node to the destination node. In
this article, optimized load balancing assumes
SPR, SPRm, and ECMP as the underlying rout-
ing algorithms, described in the previous sec-
tions. We introduce two novel routing
algorithms: load balanced SPRm (LB-SPRm,
and load balanced equal cost routing (LB-
ECR).

Balancing coefficients k;, 0 <i < N -1 are
optimized using the linear program that mini-
mizes the maximal link utilization, Q, in the net-
work, and therefore maximizes the network
throughput. In the LP model, the sum of contri-
butions from each flow to the traffic of a partic-
ular link should be smaller than the maximal
link utilization in the network, Q. A loss-free
network is achieved if the maximal link utiliza-
tion is smaller than 1. In addition, the sum of
balancing coefficients, k;, in the model should be
equal to 1.

Due to the two-stage load balancing, link
loads only depend on balancing coefficients k;,
generated traffic loads s;, and terminated traffic
loads r; of all switches 0 <i < N -1 (s; and r; are
proportional to the node weights). The linear
program maximizes Q under the following con-
straints:

o<l
S B ks + k)
. (1,m) m " m m-i
Vi 7 <Q
N (1)

Factor F;,, in Eq. 1 represents the contribu-
tion of the node pair (i, m) to the link load,
where one of those nodes is the intermediate
node and the other is either the source or the
destination. The F factors are calculated accord-
ing to the underlying routing algorithm. In SPR

IEEE Communications Magazine * November 2013

35

|
The number of alter-
native paths with the
same cost in dragon-
fly topology is rela-
tively small. As a
result, the advantage
of ECMP with
respect to the SPR
routing, as well as
the advantage of
LB-ECR compared to
LB-SPR, are not as
pronounced as
in the flattened
butterfly network.

Routing Algorithm SPR LB-SPR SPRm LB-SPRm ECMP LB-ECR VBR
Fat-tree 5 125 25 125 125 125 89.285
Dragonfly 11.333 69.515 11.333 72.009 17 76.81 60.176
Flattened butterfly 5.33 40.58 4.571 43.63 29.538 64 64

Table 1. Maximal normalized network offered load with no losses.

and SPRm, a link can be used by the traffic
between a node pair or not, so F;,, € {0, 1}; in
ECMP, this traffic can be split in nodes along
the path; as only its portion might be transmitted
through the link in that case, F;,, could be less
than 1. Solution of the described linear model
provides values of Q and balancing coefficients.
The guaranteed traffic load for node i is calcu-
lated as s;/Q.

Optimized load balanced routing algorithms
(LB-SPR, LB-SPRm, LB-ECR) can be defined
to balance either flows or packets. In the first
case, the flow bit rates must be learned, and the
flows need to be assigned to the intermediate
nodes according to the balancing coefficients
assigned to these nodes. As mentioned before,
flow-based balancing delivers packets in order,
but spreads the traffic unevenly across the net-
work links. More even spreading can be achieved
at the expense of increased implementational
complexity. For these reasons, we analyze LB-
SPR, LB-SPRm, and LB-ECR based on packet-
by-packet balancing.

ANALYSIS AND
EXPERIMENTAL RESULTS

We calculate the maximum throughputs guaran-
teed in loss-free networks by the routing algo-
rithms introduced before: SPR, LB-SPR, SPRm,
LB-SPRm, ECMP, LB-ECR, and Valiant bal-
ancing. These algorithms are analyzed in fat-
tree, flattened butterfly and dragonfly data
center topologies. Then, we will simulate the
performance of the routing algorithms under the
consideration in lossy networks with the same
topologies. The parameters of the network
topologies are selected to have similar bisection
bandwidths.

In the analysis, (10,3) fat-tree topology is
used with 10-port switches and three levels, hav-
ing a bisection bandwidth of 62.5 Gb/s. Flattened
butterfly topology has a dimension d = 6, and
dragonfly topology has g = 17 groups and a = 4
switches in a group, with 2 = 4 connections from
each switch toward other groups. Consequently,
flattened butterfly and dragonfly topologies have
bisection bandwidths of 64 Gb/s and 68 Gb/s,
respectively. Analyzed network topologies com-
prise similar numbers of switches of similar sizes.
In particular, the fat-tree network under consid-
eration comprises 75 10-port switches and 125
servers, the flattened butterfly comprises 68 9-
port switches and 136 servers, while the dragon-
fly network comprises 64 8-port switches and 128
servers. Link capacities are 1 Gb/s.

Reference [15] presents a method for finding

a set of communicating node pairs that will
cause the worst case link utilization in a given
network for the specified routing algorithm. For
each link in the network, a bipartite graph is
generated with all communicating nodes in both
partitions. An edge between two nodes is
assigned a weight according to the traffic load
these two nodes contribute to the link. The
worst case traffic pattern for that link is found
using the maximum weight matching of the
graph.

The worst case traffic pattern for the network
includes the communicating pairs that cause the
maximal utilization of the most heavily loaded
link. Table 1 shows the maximal offered load
with no losses, normalized to the link capacity,
for the analyzed topologies and routing schemes
assuming the worst case traffic pattern.

We have also conducted an evaluation of the
discussed routing protocols using the ns-3 net-
work simulator. We have implemented a genera-
tor of network topologies, and performed
experiments using fat-tree, flattened butterfly,
and dragonfly topologies. The worst case traffic
patterns are assumed, which are calculated as in
[15].

Network throughput for constant bit rate
UDP traffic is depicted in Fig. 4. Figure 4 pre-
sents results for SPR, SPRm, LB-SPR, LB-
SPRm, ECMP, Valiant, and LB-ECR routing.
The graphs present the total network through-
put, which increases linearly with the offered
load when there is no packet loss or packet loss
is limited. As packet loss increases, throughput
rises more slowly, reaches saturation, and in
some cases even declines. Table 1 presents the
offered traffic loads for which the links get over-
loaded and packet losses begin.

From Fig. 4 and Table 1, one can observe that
balancing provides higher throughputs for the
worst case traffic patterns due to the more even
distribution of traffic across network links. LB-
ECR performs well in all topologies, and pro-
vides the highest guaranteed throughputs in
loss-free networks, as can be observed from
Table 1. LB-ECR achieves two times higher max-
imum throughput for the zero packet loss than
standard ECMP in the flattened butterfly net-
work and four times higher throughput in the
dragonfly network. In fat-tree networks, LB-ECR
and ECMP perform similarly. Figure 4 shows
that ECMP exhibits very good performance for
higher packet losses. However, applications in
data centers are typically delay-sensitive and do
not tolerate retransmissions, which is why packet
losses should be minimized.

For fat-tree topology, all balancing algorithms
perform well, and the highest throughputs are

36

IEEE Communications Magazine ¢ November 2013

achieved. This is a consequence of the constant
bandwidth between levels and the fact that all
paths across any level have equal costs. Only
Valiant balancing is slightly worse because it
unnecessarily detours traffic through the topolo-
gy when a balancing node is not on the path of a
packet. We can also observe that SPRm signifi-
cantly outperforms the conventional SPR algo-
rithm while maintaining packets in order. On the
other side, fat-tree topology requires more
switches with a larger number of ports compared
to the other topologies.

In the butterfly topology, LB-ECR provides a
theoretical maximum for the guaranteed traffic
loads. In this case, balancing coefficients are
equal, and LB-ECR is equivalent to the Valiant
balancing.

The number of alternative paths with the
same cost in the dragonfly topology is relatively
small. As a result, the advantage of ECMP with
respect to the SPR routing, as well as the advan-
tage of LB-ECR compared to LB-SPR, are not
as pronounced as in the flattened butterfly net-
work. For the same reason, SPRm does not out-
perform SPR.

LB-SPR, LB-SPRm, and LB-ECR achieve
balanced distribution of traffic across links in
the network. As the network throughput
increases, most links become overloaded with
similar amounts of traffic, and packet drops
occur on all those links. With full queues, traf-
fic toward the intermediate nodes, and traffic
from the intermediate nodes toward the desti-
nations contest for the available bandwidth.
This results in a decline of the total throughput
in a lossy network, because the flows toward
the intermediate nodes increase with the
increase of the offered traffic, and they over-
take resources from the flows heading toward
their destinations.

CONCLUSION

We have calculated maximal guaranteed net-
work throughputs when promising routing
schemes are used in typical data center topolo-
gies, and confirmed theoretical results through
experimental measurements. It has been shown
that the optimization of load balancing improves
guaranteed throughput in a loss-free network. In
particular, the proposed LB-ECR algorithm
achieves the highest guaranteed throughputs in
loss-free networks. Loss-free networks are well
suited to data center applications, which are typ-
ically delay-sensitive and do not tolerate retrans-
missions. The underlying routing algorithm of
LB-ECR, ECMP, was shown to perform very
well in lossy networks compared to the other
algorithms.

In LB-ECR, LB-SPR, and LB-SPRm, we
optimize load-balancing coefficients using the
simple LP model ,which eliminates the flow list
or traffic matrix. The traffic matrix and flow list
are eliminated by routing every packet via a bal-
ancing router, thus excluding direct connection
of endpoints in the linear model. Our method
uses the traffic vector, containing the total input
and output traffic load of each node. This elimi-
nates the need for predicting complex behavior
of applications typical for data centers.

Throughput (Gb/s)

Throughput (Gb/s)

Throughput (Gb/s)

200 T T T T T T T
-%=SPR
—LB-SPR
=¥ SPRm
=% -LB-SPRm
—A—Valiant
150 ECMP i
—e—LB-ECR
100 | E
50+ E
33 = - X
e ek 56 Xe X XK = X XX 6 e K= X=X D D K
oOLE 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Offered load (Gb/s)
(a)
70 T T T T T
=»=SPR
—LB-SPR
60 =¥ SPRm
I'| -#-LB-SPRm T
—A—Valiant
ECMP
50 |-| == LB-ECR -
40 B
30+ E
20 -
10+ -
0 1 1 1 1 1
0 25 50 75 100 125 150
Offered load (Gb/s)
(b)
80 T T T T T
=%=SPR
—»LB-SPR
70 || =% SPRm i
=¥ -LB-SPRm
—A—-Valiant
60 ECMP -
-—-LB-ECR
50 E
40+ E
30 B
20 -
10+ -
0 1 1 1 1 1
0 25 50 75 100 125 150

Offered load (Gb/s)
(c)

Figure 4. Throughput: a) performance for the fat-tree topology; b) performance

for the flattened butterfly topology; c) performance for the dragonfly topology.

IEEE Communications Magazine * November 2013

37

|
It has been shown
that the optimization
of load balancing
improves guaranteed
throughput in a
loss-free network. In
particular, the
proposed LB-ECR
algorithm achieves
the highest guaran-
teed throughputs in
loss-free networks.

REFERENCES

[1] M. Anti¢ and A. Smiljani¢, “Routing with Load Balanc-
ing: Increasing the Guaranteed Node Traffics,” IEEE
Commun. Letters, June 2009.

[2] M. Anti¢, N. Maksi¢, and A. Smiljani¢, “Two Phase Load
Balanced Routing Using OSPF,” IEEE JSAC, Jan. 2010.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
Commodity Data Center Network Architecture,” Proc.
SIGCOMM, 2008.

[4] C. Guo et al., “Bcube: A High Performance, Server-Cen-
tric Network Architecture for Modular Data Centers,”
Proc. SIGCOMM, 2009.

[5]). Kim et al., “Topology-Driven, Highly- Scalable Drag-
onfly Topology,” Proc. Int’l. Symp. Computer Architec-
ture 2008.

[6] J. Kim et al., “Flattened Butterfly: A Cost-Efficient
Topology for High-Radix Networks,” Proc. ISCA, 2007.

[7] A. Greenberg et al., "VL2: A Scalable and Flexible Data
Center Network,” Proc. SIGCOMM, 2009.

[8] I. Keslassy et al., “Optimal Load-Balancing,” Proc. INFO-
COM, Mar. 2005.

[9] A. Smiljani ¢, “Rate and Delay Guarantees Provided by
Clos Packet Switches with Load Balancing,” IEEE Trans.
Net., Feb. 2008.

[10] M. Al-Fares et al., “Hedera: Dynamic Flow Scheduling
for Data Center Networks,” Proc. Usenix NSDI 2010,
2010.

[11] C. Raiciu et al., “Improving Data Center Performance
and Robustness with Multipath TCP,” Proc. Usenix NSDI
2011, 2011.

[12] J. T. Moy, OSPF Complete Implementation, Addison-
Wesley Professional, 2000.

[13] L. Valiant and G. Brebner, “Universal Schemes for Par-
allel Communication,” Proc. 13th Annual Symp. Theory
of Computing, May 1981, pp. 263-77.

[14] N. Maksi c, et al., “On the Performance of the Load
Balanced Shortest Path Routing,” Proc. PacRim’09,
2009.

[15] B. Towles and W. J. Dally, “Worst-Case Traffic for
Oblivious Routing Functions,” Computer Architecture
Letters, 2002.

BIOGRAPHIES

NATASA MAKSIC (maksicnatasa@gmail.com) received her
B.Sc. degree in electrical engineering from Belgrade Univer-
sity, Serbia, in 2007 as the best student in her class, with
the maximum average grade of 10. Currently, she works as
a research assistant at Belgrade University. Her research
interests are communication networks and protocols. She
was awarded a scholarship by the Serbian Ministry of Edu-
cation from 2003 to 2005 for her academic record, and
received several awards from companies such as YUBC Sys-
tems and Eurobank EFG.

ALEKSANDRA SMILJIANIC [M'96] received M.A. and Ph.D.
degrees in electrical engineering from Princeton University
in 1996 and 1999, respectively. She got her B.Sc. degree in
electrical engineering at Belgrade University in 1993. Her
area of research is high-performance switching and rout-
ing. Currently, she works as an associate professor at Bel-
grade University. She worked for AT&T Labs Research from
1999 until 2004. She is the author of numerous conference
and journal papers in the area of high-performance switch-
ing and routing. She is the inventor of 10 U.S. patents in
this area. She is the author of the Best Papers at IEEE Con-
ference on High Performance Switching and Routing 2000
and 2002. She got the Research Excellence Award at AT&T
Labs in 2000. She served as an Editor of IEEE Communica-
tion Letters and OSA Journal on Optical Networking. She
has served as a Guest Editor of the IEEE JSAC Special Issue
on Switching and Routing for Scalable and Energy Efficient
Data Center Networks.

38

IEEE Communications Magazine ¢ November 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

