
COMMUNICATION LETTERS 1

Routing with Load Balancing - Increasing the
Guaranteed Node Traffics

Marija Antić, Graduate Student Member, IEEE, and Aleksandra Smiljanić, Member, IEEE

Abstract—In this paper we introduce the novel routing scheme
based on load balancing and shortest-path routing. First, we
present the linear program for routing optimization. The non-
blocking network is considered, which only limits the traffic loads
of the network nodes. Guaranteed node traffic loads pass through
the network regardless of the actual traffic destinations. The
derived optimization includes node priority weights that allow
the network planner to assign higher or lower traffic values to the
network nodes. Then we analyze the performance of the proposed
strategy for some realistic network topologies, and show that the
proposed scheme achieves higher guaranteed node traffic loads
than the regular shortest-path routing.

Index Terms—Routing, load balancing, linear programming

I. INTRODUCTION

THE peer-to-peer traffic is becoming dominant on the
Internet today, making it a highly dynamic environment.

The actual traffic distribution becomes very hard to predict and
this requires certain changes in the routing design. Usually,
the routing scheme in a network is oblivious, i.e. the path
for the traffic between the origin-destination (OD) node pair
is predetermined, and the routing decisions are made based
only on the traffic destination, while the activity of the nodes
in the network and the actual link loads are not taken into
consideration. Commonly, the traffic pattern is described by
the traffic matrix TM = [dij]N×N , whose elements dij

represent the traffic load between the node pairs (i, j). Even
the best existing techniques for the traffic matrix prediction
involve serious error margins. The increasing peer-to-peer
traffic makes this prediction even more difficult.

The maximum number of users that can be serviced by a
network node is proportional to the guaranteed (or permissible)
node traffic, i.e. the traffic that can always be routed through
the network. We will observe the guaranteed node traffic
as the performance measure of a particular routing scheme
on the given network, and define the optimal routing as the
one that maximizes the guaranteed node traffic. The problem
of finding the optimal oblivious routing was addressed by
many authors. In [1], a non-polynomial solution for general
networks, based on the graph decomposition was proposed.
Later it was followed by the polynomial-time algorithm in [2],
[3]. In [4], [5] the authors use linear programming to optimize
the routing strategy. In [6], [7] Kodialam et al. introduce the
two-phase routing scheme, based on load balancing. Load
balancing allows them to calculate the elements of the traffic
matrix based on the incoming/outgoing node traffic loads,

M. Antić is with the Faculty of Electrical Engineering, Belgrade, Serbia.
A. Smiljanić is with the Faculty of Electrical Engineering, Belgrade, Serbia

and the Polytechnic Institute of New York University.

which are easier to predict. The linear program introduced
in [7] considers the general case of routing coefficients’
optimization, and has O(N2M) variables and O(N2M) con-
straints (where N and M are the number of nodes and links
in the network, respectively). Such high complexity of this
linear program makes it impossible to use in practice, where
recalculations are triggered every time the network topology
changes, and have to finish within minutes. The experiment
that we ran, and that will be described in this paper, showed
that the optimization in [7] takes as long as several days even
for the smallest of the analyzed networks.

The routing scheme that we analyze in this paper is similar
to the one proposed by Kodialam et al. We use load balancing
and route every flow in two stages. But instead of solving
the general problem of routing coefficients’ optimization, we
decide to use the shortest-path routing in both of the stages.
This allows us to significantly simplify the linear program -
we only optimize the node weights that determine the traffic
split ratio for load balancing. Our model, therefore, has only
O(N) variables and O(M) constraints, compared to O(N2M)
variables and constraints in [4], [5], [7]. The proposed routing
was already introduced in [9], but only the case when all the
nodes in the network generate and receive equal traffic loads
was considered. Now, we introduce the node weights in the
linear program in a way that allows us to guarantee different
traffic loads to different nodes, which are proportional to the
preassigned weights. Namely, in a real network, the traffic
loads are not necessarily equal for all the nodes. We consider
two different weight models, with unequal node demands. It
turns out that the proposed routing scheme performs very
well in the analyzed situations, and allows significantly higher
guaranteed node traffic loads, compared to the case of the
shortest-path routing commonly used in the networks today.

II. LOAD BALANCED ROUTING (LBR)

It has been shown that the load balancing increases the
capacity of the non-blocking regular networks [8]. It is used
to distribute the traffic evenly among the links in the network
and avoid bottlenecks. Also, it allows to simplify the linear
program for the optimal routing design, and express it only in
terms of the total incoming/outgoing node traffic loads.

The traffic between a node pair (i, j) is routed in two steps.
First, portions of the flow from i are routed to intermediate
nodes m ∈ V (V is the set of network nodes). In the next
step, every intermediate node forwards the traffic to its final
destination j. The traffic from i to m, i.e. from m to j is
routed along the shortest paths. The portion of the flow that is

COMMUNICATION LETTERS 2

2

4

5

3

1

1 15k d
2 15k d

4 15k d

5 15k d
3 15k d

1 15k d 2 15k d

4 15k d

3 15k d
5 15k d

(a)

1is

2is

iVs

1js

2js

jWs

Vi

x 2i

1i 1j

2j

Wj

.

.

.

.

.

.

y

(b)

Fig. 1: (a) Routing scheme illustration. (b) The assigned graph.

balanced across node m equals km, and does not depend on i
and j. Of course,

∑
m∈V km = 1. Fig. 1a illustrates the case

of routing the traffic between the nodes 1 and 5. The first step
flows are represented by the dashed arrows, and the second
step flows by the solid ones.

The node traffic maximization and the congestion mini-
mization problems are equivalent. Congestion Q represents
the maximum link utilization in the network, where the link
utilization is the ratio of the link load L(l) and the link
capacity, C(l). It is related to the maximum guaranteed traffic,
since all the initial flows in the network can be increased up
to 1/Q times, without causing the link overload.

Assume that the network is represented by a directed graph
G = (V, E), where V is the set of nodes and E is the set of
links. Let the number of nodes be N and the number of links
M . Let i be a source node. The outgoing traffic generated by
i equals si =

∑
j∈V dij , where dij is the intensity of a flow

from i to j. Similarly, for j being the destination node and
rj its total incoming traffic, rj =

∑
i∈V dij . We have already

defined the traffic matrix as TM = [dij]N×N . We will refer
to the vectors S = [s1, s2, . . . , sN] and R = [r1, r2, . . . , rN]
as out-traffic vector and in-traffic vector.

As stated before, the load balancing allows us to formulate
the problem of finding the optimal routing strategy in terms
of the total node traffic. Namely, the traffic between any two
nodes i and m consists of two components: the traffic b

(1)
im,

generated by i and balanced across m, and the traffic b
(2)
im,

directed to m and passing through i as the intermediate node.
It is easy to see that it holds

b
(1)
im =

∑
j∈V

kmdij = kmsi (1)

b
(2)
im =

∑
p∈V

kidip = kirm. (2)

The load of link l ∈ E can be expressed as

L(l) =
∑

(i,m)
F

(l)
im(kmsi + kirm), (3)

where F
(l)
im = 1 if the link l is on the shortest path between i

and m, and F
(l)
im = 0 otherwise. Obviously, the link load does

not depend on the traffic pattern between nodes, but only on
the total incoming/outgoing node traffic.

We will assume that incoming and outgoing traffic loads at
the nodes are equal, i.e. ri = si for every i. This assumption
is realistic in the backbone, regional and even local networks,

since these networks utilize the equipment with symmetric
bidirectional links, unlike the access networks which often
use the equipment with asymmetric links and which are not
considered here. As a result, we can use the following linear
program to minimize the congestion:

min Q

(C1)
∑N

i=1 ki = 1

(C2) ∀l ∈ E :
∑

(i,m)
F

(l)
im

(kism+kmsi)

C(l) ≤ Q

(4)

The guaranteed incoming and outgoing traffic will be equal to
the in-traffic and out-traffic vector divided by the calculated
minimal link congestion. By setting the in- and out-traffic
vector elements to be equal to the desired node weights,
wi, i ∈ V , we can control the proportion of the guaranteed
node loads. We will examine two different cases for assigning
the weights.

1) Case I: First, we assume that the node traffic is pro-
portional to the total link capacity entering/leaving the node.
Let the total link capacity entering and leaving the node i be
Cn(i). The values of the in-vector and out-vector elements
are:

si = ri = wi = Cn(i)
minj∈V Cn(j) . (5)

2) Case II: We suppose that the in-vector and out-vector
traffic values are proportional to the number of inhabitants
serviced by the network node. When there are multiple routers
(nodes) at the same location, we assume that the total load
is equally distributed among them. Let p(z) denote the pop-
ulation at the location z, and n(z) the number of routers.
The population serviced by a router i at this location equals
w′

i = p(z)/n(z). We assume that ri = si for every i and that
the out-traffic vector elements have the following values:

si = wi =

⎧⎪⎪⎨
⎪⎪⎩

1, w′
i ≤ 105

⌊
w′

i/105
⌋
, u ≤ w′

i

105 ≤ u + 0.5, u ∈ N
⌊
w′

i/105
⌋
+1, u+0, 5 ≤ w′

i

105 ≤ u+1, u ∈ N

(6)
Here,

⌊
w′

i/105
⌋

is the floor function, and u an integer.
The guaranteed traffic load for the node i in the network

is proportional to the value of the out-vector element si,
and equals si/Q. The values of the in-vector and out-vector
elements are chosen so that mini si = mini ri = 1. So, the
minimum guaranteed node traffic load equals:

slbr
gtd = 1/Q. (7)

III. SHORTEST PATH ROUTING (SPR)

We determine the guaranteed node traffic for shortest-path
routing (SPR), in order to compare it with the guaranteed node
traffic for the proposed load balanced routing (LBR). In the
case of the SPR, the link loads depend on the traffic-matrix
elements , and not only on the node traffic loads. The worst
case traffic-patterns should be found for all links, and they
determine the guaranteed node traffic loads

Let us denote the set of all node pairs that communicate
across the link l ∈ E as P (l) =

{
(i, j)|F (l)

ij = 1
}

. Define

COMMUNICATION LETTERS 3

TABLE I: Results for the six Rocketfuel network topologies

N M Model Size Case I Case II
NETWORK (nodes) (links) var con G t[sec] G t[sec]

AS 3967 (Exodus) 79 294 80 282 6.02 2.77 5.74 2.88
AS 1755 (Ebone) 87 322 88 316 2.02 3.38 3.36 3.56
AS 1221 (Telstra) 104 302 105 304 2.24 3.53 2.34 4.12

AS 6461 (Abovenet) 138 744 139 720 4.93 9.36 3.04 9.22
AS 3257 (Tiscali) 161 656 162 629 5.95 15.92 7.99 13.38

AS 1239 (Sprintlink) 315 1944 316 1923 7.69 60.36 5.57 61.42

the set of sources sending their traffic across l by I(l) =
{i|∃j, (i, j) ∈ P (l)} , and the set of destinations receiving the
traffic across l by J(l) = {j|∃i, (i, j) ∈ P (l)} .

Let us calculate the traffic loads that can be guaranteed when
SPR is used in a given network. The maximum matching
algorithm cannot be used in this case as in [9] because the
nodes generate different traffic loads. We form a bipartite
graph with I(l) and J(l) as the sets of nodes - Fig. 1b. Let
there be a directed edge of infinite capacity in the bipartite
graph between every pair of nodes (i, j) ∈ P (l) (note the
difference between these edges and the links in the network,
they are not related). Let us now add the additional source and
sink nodes to this graph. Let the source node be denoted by
x and the sink node by y. Let there be a directed edge from
x to every i ∈ I(l), with the capacity si. Also, let there be a
directed edge from every j ∈ J(l), with the capacity sj . Now
we determine the value of the maximum flow from x to y
in this graph, fmax(l), i.e. the maximum traffic load that the
node x can generate and pass to y through the given network
[13]. The worst-case link utilization is U(l) = fmax(l)/C(l).
Since mini si = 1, this implies the node traffic limit on link
l to be 1/U(l). The minimum guaranteed node traffic in the
whole network equals

sspr
gtd = min

l∈E
1/U(l). (8)

IV. RESULTS

We compared the performance of LBR with the performance
of SPR on the six backbone network topologies published
in the Rocketfuel project [10], for two different node weight
models, described in the previous section. We calculated the
gain of the guaranteed node traffic loads when balancing is
used:

G = slbr
gtd/sspr

gtd . (9)

Since the original data did not include the link capacities,
but only the link weights, we assumed that the capacity of
the link is inversely proportional to the link weight. For the
analysis in Case II, we also needed the information on the
number of inhabitants in the cities where the routers are
located [11]. We used the linear program (4) to optimize the
node coefficients and obtain the maximum guaranteed node
traffic for the LBR. Then we calculated the guaranteed node
traffic in the case of SPR, as described in Section III, and
calculated the gain (9).

The gains and the times needed to optimize the node
coefficients are given in Table I. The gain depends on the
network topology - for the more meshed topologies, the gain
results are higher. For the Case I the gain ranges from 2.02 to
7.69, and for the Case II from 2.34 to 7.99. The optimization

times listed in the table are for the AMD Athlon 64 3500+
processor (2.2 GHz clock speed, 960 MB of RAM), using the
LP Solve optimization software [12]. For the Exodus network
(AS 3967) we also tested the linear program proposed in [7] -
the optimization lasted more than five days, compared to less
than three seconds in our case.

V. CONCLUSION

We showed that the load balancing significantly increases
the guaranteed node traffic load in the real case network
topologies. It also allows to express the routing optimization
problem only in terms of the total node traffic loads, which
are easier to predict than the traffic loads between node pairs.
The complexity of the linear program used to optimize the
routing coefficients is acceptable, and the proposed routing
strategy could easily be brought to life. It represents only
a minor modification of the shortest-path routing, which is
most widely used. When a packet enters the network, the
intermediate node for it has to be decided. The packet is
then routed along the shortest paths from the origin to the
intermediate node, and from the intermediate node to the final
destination. By assigning different weights to the nodes, the
network planner can split the available network capacity to
the nodes proportionally to the bandwidth demands at these
nodes.

REFERENCES

[1] H. Räcke, ”Minimizing Congestion in General Networks,” FOCS 43,
2002.

[2] C. Harrelson, K.Hildrum, and S. Rao, ”A Polynomial-Time Tree De-
composition to Minimize Congestion,” in Proc. of SPAA’03, 2003.

[3] M. Bienkowski, M. Korzeniowski, and H. Räcke, ”A Practical Algorithm
for Constructing Oblivious Routing Schemes”, Proc. of SPAA’03, 2003.

[4] D. Applegate and E. Cohen, ”Making Intra-Domain Routing Robust to
Changing and Uncertain Traffic Demands: Understanding Fundamental
Tradeoffs,” Proc. of SIGCOMM ’03, 2003.

[5] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, ”Optimal Oblivious
Routing in Polynomial Time,” Proc. of the 35th ACM Symposium on
the Theory of Computing, 2003.

[6] M. Kodialam, T. V. Lakshman, and S. Sengupta, ”Traffic-Oblivious
Routing for Guaranteed Bandwidth Performance,” Communications
Magazine, 45(4):46-51, Apr. 2007.

[7] M. Kodialam, T. V. Lakshman, and S. Sengupta, ”Maximum Throughput
Routing of Traffic in the Hose Model”, Proc. of INFOCOM 2006, 2006.

[8] A. Smiljanić, ”Rate and Delay Guarantees Provided by Clos Packet
Switches with Load Balancing”, Transactions on Networking, Feb. 2008.

[9] M. Antić, A. Smiljanić, ”Oblivious Routing Scheme Using Load Bal-
ancing Over Shortest Paths”, in Proc. of ICC 2008, May 2008.

[10] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, ”Inferring Link
Weights Using End-to-End Measurements,” Proc. of the IMW ’02, 2002.

[11] Wikipedia, the Free Encyclopedia, [Online] http://en.wikipedia.org
[12] LpSolve, Reference Guide [Online]http://lpsolve.sourceforge.net
[13] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications, Prentice Hall, 1993.
[14] J. Matoušek, B. Gärtner, Understanding and Using Linear Programming,

Springer Verlag, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

